Back to Search Start Over

Machine Learning-Based Scoring Functions, Development and Applications with SAnDReS

Authors :
Walter Filgueira de Azevedo Junior
Camila Rizzotto
Gabriela Bitencourt-Ferreira
Source :
Current medicinal chemistry. 28(9)
Publication Year :
2019

Abstract

Background: Analysis of atomic coordinates of protein-ligand complexes can provide three-dimensional data to generate computational models to evaluate binding affinity and thermodynamic state functions. Application of machine learning techniques can create models to assess protein-ligand potential energy and binding affinity. These methods show superior predictive performance when compared with classical scoring functions available in docking programs. Objective: Our purpose here is to review the development and application of the program SAnDReS. We describe the creation of machine learning models to assess the binding affinity of protein-ligand complexes. Methods: SAnDReS implements machine learning methods available in the scikit-learn library. This program is available for download at https://github.com/azevedolab/sandres. SAnDReS uses crystallographic structures, binding and thermodynamic data to create targeted scoring functions. Results: Recent applications of the program SAnDReS to drug targets such as Coagulation factor Xa, cyclin-dependent kinases and HIV-1 protease were able to create targeted scoring functions to predict inhibition of these proteins. These targeted models outperform classical scoring functions. Conclusion: Here, we reviewed the development of machine learning scoring functions to predict binding affinity through the application of the program SAnDReS. Our studies show the superior predictive performance of the SAnDReS-developed models when compared with classical scoring functions available in the programs such as AutoDock4, Molegro Virtual Docker and AutoDock Vina.

Details

ISSN :
1875533X
Volume :
28
Issue :
9
Database :
OpenAIRE
Journal :
Current medicinal chemistry
Accession number :
edsair.doi.dedup.....f80c1a87cb3fa47d204e2eb78ff588bf