Back to Search Start Over

Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 microm from an optical filament

Authors :
P. Colosimo
Anne Marie March
K. D. Schultz
J. Wheeler
Cosmin I. Blaga
Razvan Chirla
Emily Sistrunk
Louis F. DiMauro
C. Roedig
James P. Cryan
Rodrigo Lopez-Martens
J. Tate
Christoph P. Hauri
E. Power
Gilles Doumy
Laboratoire d'optique appliquée (LOA)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Department of Physics
Ohio State University [Columbus] (OSU)
Center for Ultrafast Optical Sciences (CUOS)
University of Michigan [Ann Arbor]
University of Michigan System-University of Michigan System
Source :
Optics Letters, Optics Letters, Optical Society of America-OSA Publishing, 2007, 32 (7), pp.868-870. ⟨10.1364/OL.32.000868⟩
Publication Year :
2007

Abstract

We report the compression of intense, carrier-envelope phase stable mid-IR pulses down to few-cycle duration using an optical filament. A filament in xenon gas is formed by using self-phase stabilized 330 microJ 55 fs pulses at 2 microm produced via difference-frequency generation in a Ti:sapphire-pumped optical parametric amplifier. The ultrabroadband 2 microm carrier-wavelength output is self-compressed below 3 optical cycles and has a 270 microJ pulse energy. The self-locked phase offset of the 2 microm difference-frequency field is preserved after filamentation. This is to our knowledge the first experimental realization of pulse compression in optical filaments at mid-IR wavelengths (lambda0.8 microm).

Details

ISSN :
01469592 and 15394794
Volume :
32
Issue :
7
Database :
OpenAIRE
Journal :
Optics letters
Accession number :
edsair.doi.dedup.....f841b344c0174b088aacfafdd7d93fa1
Full Text :
https://doi.org/10.1364/OL.32.000868⟩