Back to Search
Start Over
Significant potential secondary structures in the Epstein-Barr virus genome
- Source :
- Proceedings of the National Academy of Sciences of the United States of America. 83(18)
- Publication Year :
- 1986
-
Abstract
- This paper identifies all statistically significant dyad symmetry combinations in the Epstein-Barr virus genome. The distribution of long dyad symmetry pairings emphasizes two regions, the 5' third of the 3.1-kilobase-pair (kbp) repeat and the oriP region, the latter essential for Epstein-Barr virus replication during latency. A 600-base-pair (bp) stretch in the 3.1-kbp repeat can establish an extended hairpin loop of stem length in excess of 208 bp of predominantly G + C stacking. Moreover, the 3.1-kbp repeat has the potential to form a wide variety of secondary structures based on juxtapositions of sizable palindromes, close dyad symmetry pairings, and direct repeats. The 3.1-kbp repeat presents several features that portend it as an important control region. The oriP region contains an abundance of statistically significant dyad symmetry combinations that strongly correlate with the "21 X 30 bp" tandem repeat units and four truncated copies of this repeat unit 1 kbp downstream. Each of the units centers on the same approximately 30-bp palindrome. Contrasts in the content and the secondary structure formations associated with the 3.1-kbp repeat units versus those of the oriP region are discussed in relation to viral or cellular function.
- Subjects :
- Genetics
DNA Replication
Herpesvirus 4, Human
Multidisciplinary
Genes, Viral
Transcription, Genetic
genetic processes
Palindrome
DNA replication
information science
Biology
Virus Replication
Genome
Tandem repeat
Epstein-Barr Virus Nuclear Antigens
Direct repeat
bacteria
Nucleic Acid Conformation
Dyad symmetry
Protein secondary structure
Antigens, Viral
Repeat unit
Repetitive Sequences, Nucleic Acid
Research Article
Subjects
Details
- ISSN :
- 00278424
- Volume :
- 83
- Issue :
- 18
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Accession number :
- edsair.doi.dedup.....f89cfa485f3194c7472b19489b5d97f9