Back to Search
Start Over
Intestinal growth and differentiation in zebrafish
- Source :
- Mechanisms of Development. 122(2):157-173
- Publication Year :
- 2005
- Publisher :
- Elsevier BV, 2005.
-
Abstract
- Intestinal development in amniotes is driven by interactions between progenitor cells derived from the three primary germ layers. Genetic analyses and gene targeting experiments in zebrafish offer a novel approach to dissect such interactions at a molecular level. Here we show that intestinal anatomy and architecture in zebrafish closely resembles the anatomy and architecture of the mammalian small intestine. The zebrafish intestine is regionalized and the various segments can be identified by epithelial markers whose expression is already segregated at the onset of intestinal differentiation. Differentiation of cells derived from the three primary germ layers begins more or less contemporaneously, and is preceded by a stage in which there is rapid cell proliferation and maturation of epithelial cell polarization. Analysis of zebrafish mutants with altered epithelial survival reveals that seemingly related single gene defects have different effects on epithelial differentiation and smooth muscle and enteric nervous system development.
- Subjects :
- Male
Embryology
Time Factors
Antimetabolites
Cellular differentiation
Germ layer
Biology
Models, Biological
Enteric Nervous System
Epithelium
Animals
Progenitor cell
Intestinal Mucosa
Zebrafish
Horseradish Peroxidase
In Situ Hybridization
Body Patterning
Cell Proliferation
Regulation of gene expression
Neurons
Gene targeting
Gene Expression Regulation, Developmental
Cell Differentiation
Epithelial Cells
Muscle, Smooth
biology.organism_classification
Phenotype
Immunohistochemistry
Cell biology
Intestines
Bromodeoxyuridine
Mutation
RNA
Enteric nervous system
Female
Developmental Biology
Subjects
Details
- ISSN :
- 09254773
- Volume :
- 122
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Mechanisms of Development
- Accession number :
- edsair.doi.dedup.....f8a642766a710b458917f7b351bf6bdf
- Full Text :
- https://doi.org/10.1016/j.mod.2004.10.009