Back to Search Start Over

On the origin & thermal stability of Arrokoth's and Pluto's ices

Authors :
Marc Neveu
Harold A. Weaver
Mohamed Ramy El-Maarry
J. M. Parker
John R. Spencer
William B. McKinnon
Scott A. Sandford
Alissa M. Earle
Orkan M. Umurhan
Mihaly Horanyi
Ralph L. McNutt
G. R. Gladstone
Andrew F. Cheng
Catherine B. Olkin
R. P. Binzel
Y. J. Pendleton
Carey M. Lisse
Olivier Mousis
William M. Grundy
Jj Kavelaars
J. T. Keane
N. Dello-Russo
Wladimir Lyra
Jordan K. Steckloff
S. A. Stern
Ivan Linscott
Bernard Schmitt
H. A. Elliott
Leslie A. Young
Dale P. Cruikshank
Daniel T. Britt
B. L. Lewis
J. M. Moore
Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL)
Southwest Research Institute [Boulder] (SwRI)
NASA Ames Research Center (ARC)
Institut de Planétologie et d'Astrophysique de Grenoble (IPAG)
Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )
Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)
Jet Propulsion Laboratory (JPL)
NASA-California Institute of Technology (CALTECH)
Southwest Research Institute [San Antonio] (SwRI)
Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS)
Massachusetts Institute of Technology (MIT)
Laboratory for Atmospheric and Space Physics [Boulder] (LASP)
University of Colorado [Boulder]
Physikalisches Institut [Bern]
Universität Bern [Bern]
Washington University in Saint Louis (WUSTL)
Lowell Observatory [Flagstaff]
Laboratoire d'Astrophysique de Marseille (LAM)
Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
Centre National d'Etudes Spatiales (CNES)
NASA for financial support of the New Horizons project
Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France
Universität Bern [Bern] (UNIBE)
Source :
arXiv, Icarus, Icarus, Elsevier, 2020, pp.114072. ⟨10.1016/j.icarus.2020.114072⟩, Icarus, 2020, pp.114072. ⟨10.1016/j.icarus.2020.114072⟩
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

We discuss in a thermodynamic, geologically empirical way the long-term nature of the stable majority ices that could be present in Kuiper Belt Object 2014 MU69 after its 4.6 Gyr residence in the EKB as a cold classical object. Considering the stability versus sublimation into vacuum for the suite of ices commonly found on comets, Centaurs, and KBOs at the average ~40K sunlit surface temperature of MU69 over Myr to Gyr, we find only 3 common ices that are truly refractory: HCN, CH3OH, and H2O (in order of increasing stability). NH3 and H2CO ices are marginally stable and may be removed by any positive temperature excursions in the EKB, as produced every 1e8 - 1e9 yrs by nearby supernovae and passing O/B stars. To date the NH team has reported the presence of abundant CH3OH and evidence for H2O on MU69s surface (Lisse et al. 2017, Grundy et al. 2020). NH3 has been searched for, but not found. We predict that future absorption feature detections will be due to an HCN or poly-H2CO based species. Consideration of the conditions present in the EKB region during the formation era of MU69 lead us to infer that it formed "in the dark", in an optically thick mid-plane, unable to see the nascent, variable, highly luminous Young Stellar Object-TTauri Sun, and that KBOs contain HCN and CH3OH ice phases in addition to the H2O ice phases found in their Short Period comet descendants. Finally, when we apply our ice thermal stability analysis to bodies/populations related to MU69, we find that methanol ice may be ubiquitous in the outer solar system; that if Pluto is not a fully differentiated body, then it must have gained its hypervolatile ices from proto-planetary disk sources in the first few Myr of the solar systems existence; and that hypervolatile rich, highly primordial comet C/2016 R2 was placed onto an Oort Cloud orbit on a similar timescale.<br />Comment: 34 Pages, 5 Figures, 2 SOM Tables

Details

Language :
English
ISSN :
00191035 and 10902643
Database :
OpenAIRE
Journal :
arXiv, Icarus, Icarus, Elsevier, 2020, pp.114072. ⟨10.1016/j.icarus.2020.114072⟩, Icarus, 2020, pp.114072. ⟨10.1016/j.icarus.2020.114072⟩
Accession number :
edsair.doi.dedup.....f8cb261ed56b2c4c5ccc97d2272f2211