Back to Search Start Over

Petrogenesis of martian sulfides in the Chassigny meteorite

Authors :
Brigitte Zanda
Jean-Pierre Lorand
R. H. Hewins
Ambre Luguet
Vincent Chevrier
Sylvain Courrech du Pont
Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG)
Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC)
Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Arkansas Center for Space and Planetary Sciences
University of Arkansas [Fayetteville]
Steinmann-Institut für Geologie, Mineralogie und Paläontologie
Rheinische Friedrich-Wilhelms-Universität Bonn
Source :
The American Mineralogist, The American Mineralogist, 2018, 103 (6), pp.872-885. ⟨10.2138/am-2018-6334⟩, American Mineralogist, American Mineralogist, Mineralogical Society of America, 2018, 103 (6), pp.872-885. ⟨10.2138/am-2018-6334⟩
Publication Year :
2018
Publisher :
Mineralogical Society of America, 2018.

Abstract

International audience; The Chassigny meteorite, a martian dunite, contains trace amounts (0.005 vol%) of Fe-Ni sulfides, which were studied from two polished mounts in reflected light microscopy, scanning electron microscope (SEM), and electron microprobe (EMP). The sulfide phases are, by decreasing order of abundance, nickeliferous (0–3 wt% Ni) pyrrhotite with an average composition M0.88±0.01S (M = Fe+Ni+Co+Cu+Mn), nickeliferous pyrite (0–2.5 wt% Ni), pentlandite, millerite, and unidentified Cu sulfides. Pyrrhotite is enclosed inside silicate melt inclusions in olivine and disseminated as polyhedral or near spherical blebs in intergranular spaces between cumulus and postcumulus silicates and oxides. This sulfide is considered to be a solidification product of magmatic sulfide melt. The pyrrhotite Ni/Fe ratios lie within the range expected for equilibration with the coexisting olivine at igneous temperatures. Pyrite occurs only as intergranular grains, heterogeneously distributed between the different pieces of the Chassigny meteorite. Pyrite is interpreted as a by-product of the low-T (200 °C) hydrothermal alteration events on Mars that deposited Ca sulfates + carbonates well after complete cooling. The shock that ejected the meteorite from Mars generated post-shock temperatures high (300 °C) enough to anneal and rehomogenize Ni inside pyrrhotite while pyrite blebs were fractured and disrupted into subgrains by shock metamorphism. The negligible amount of intergranular sulfides and the lack of solitary sulfide inclusions in cumulus phases (olivine, chromite) indicate that, like other martian basalts so far studied for sulfur, the parental melt of Chassigny achieved sulfide-saturation at a late stage of its crystallization history. Once segregated, the pyrrhotite experienced a late-magmatic oxidation event that reequilibrated its metal-to-sulfur ratios.

Details

ISSN :
19453027 and 0003004X
Volume :
103
Database :
OpenAIRE
Journal :
American Mineralogist
Accession number :
edsair.doi.dedup.....f90d7976b23ff085c7e3083ca4ede5e3
Full Text :
https://doi.org/10.2138/am-2018-6334