Back to Search Start Over

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks

Authors :
Sainte Fare Garnot, Vivien
Landrieu, Loic
Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution (MATIS)
Laboratoire des Sciences et Technologies de l'Information Géographique (LaSTIG)
École nationale des sciences géographiques (ENSG)
Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Institut National de l'Information Géographique et Forestière [IGN] (IGN)-École nationale des sciences géographiques (ENSG)
Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Institut National de l'Information Géographique et Forestière [IGN] (IGN)
Source :
International Conference on Computer Vision (ICCV), International Conference on Computer Vision (ICCV), Oct 2021, Virtual, United States
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

Unprecedented access to multi-temporal satellite imagery has opened new perspectives for a variety of Earth observation tasks. Among them, pixel-precise panoptic segmentation of agricultural parcels has major economic and environmental implications. While researchers have explored this problem for single images, we argue that the complex temporal patterns of crop phenology are better addressed with temporal sequences of images. In this paper, we present the first end-to-end, single-stage method for panoptic segmentation of Satellite Image Time Series (SITS). This module can be combined with our novel image sequence encoding network which relies on temporal self-attention to extract rich and adaptive multi-scale spatio-temporal features. We also introduce PASTIS, the first open-access SITS dataset with panoptic annotations. We demonstrate the superiority of our encoder for semantic segmentation against multiple competing architectures, and set up the first state-of-the-art of panoptic segmentation of SITS. Our implementation and PASTIS are publicly available.<br />Comment: Accepted at ICCV2021, PASTIS Dataset available at https://github.com/VSainteuf/pastis-benchmark, PyTorch implementation at https://github.com/VSainteuf/utae-paps

Details

Database :
OpenAIRE
Journal :
International Conference on Computer Vision (ICCV), International Conference on Computer Vision (ICCV), Oct 2021, Virtual, United States
Accession number :
edsair.doi.dedup.....f936357e479dfef342a6c4228ba92dd8
Full Text :
https://doi.org/10.48550/arxiv.2107.07933