Back to Search Start Over

On a multilevel Levenberg–Marquardt method for the training of artificial neural networks and its application to the solution of partial differential equations

Authors :
Elisa Riccietti
Xavier Vasseur
Serge Gratton
Henri Calandra
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
Total (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université Toulouse 1 Capitole - UT1 (FRANCE)
Institut de Recherche en Informatique de Toulouse - IRIT (Toulouse, France)
TOTAL-Scientific and Technical Center Jean Féger (CSTJF)
TOTAL FINA ELF
Algorithmes Parallèles et Optimisation (IRIT-APO)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Institut National Polytechnique (Toulouse) (Toulouse INP)
Département d'Ingénierie des Systèmes Complexes (DISC)
Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)
Source :
Optimization Methods and Software, Optimization Methods and Software, Taylor & Francis, 2020, pp.1-26. ⟨10.1080/10556788.2020.1775828⟩
Publication Year :
2020
Publisher :
Taylor & Francis, 2020.

Abstract

International audience; In this paper, we propose a new multilevel Levenberg–Marquardt optimizer for the training of artificial neural networks with quadratic loss function. This setting allows us to get further insight into the potential of multilevel optimization methods. Indeed, when the least squares problem arises from the training of artificial neural networks,the variables subject to optimization are not related by any geometrical constraints and the standard interpolation and restriction operators cannot be employed any longer. A heuristic, inspired by algebraic multigrid methods, is then proposed to construct the multilevel transfer operators. We test the new optimizer on an important application: the approximate solution of partial differential equations by means of artificial neural networks. The learning problem is formulated as a least squares problem, choosing the nonlinear residual of the equation as a loss function, whereas the multilevel method is employed as a training method. Numerical experiments show encouraging results related to the efficiency of the new multilevel optimization method compared to the corresponding one-level procedure in this context.

Details

Language :
English
ISSN :
10556788 and 10294937
Database :
OpenAIRE
Journal :
Optimization Methods and Software, Optimization Methods and Software, Taylor & Francis, 2020, pp.1-26. ⟨10.1080/10556788.2020.1775828⟩
Accession number :
edsair.doi.dedup.....f946ac1b55ded897c4df1d42b022a04c
Full Text :
https://doi.org/10.1080/10556788.2020.1775828⟩