Back to Search Start Over

Geochemistry and oxidative potential of the respirable fraction of powdered mined Chinese coals

Authors :
Joaquim Cortés
Frank J. Kelly
Natalia Moreno
Fulvio Amato
Xavier Querol
Ana Oliete Dominguez
Pedro Trechera
Patricia Córdoba
Teresa Moreno
Xinguo Zhuang
Gaëlle Uzu
Yunfei Shangguan
Jean Luc Jaffrezo
Takoua Mhadhbi
Baoqing Li
Jing Li
Ministerio de Ciencia e Innovación (España)
Moreno, Teresa
Amato, Fulvio
Querol, Xavier
Moreno, Teresa [0000-0003-3235-1027]
Amato, Fulvio [0000-0003-1546-9154]
Querol, Xavier [0000-0002-6549-9899]
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

This study evaluates geochemical and oxidative potential (OP) properties of the respirable (finer than 4 μm) fractions of 22 powdered coal samples from channel profiles (CP4) in Chinese mined coals. The CP4 fractions extracted from milled samples of 22 different coals were mineralogically and geochemically analysed and the relationships with the OP evaluated. The evaluation between CP4/CP demonstrated that CP4 increased concentrations of anatase, Cs, W, Zn and Zr, whereas sulphates, Fe, S, Mo, Mn, Hf and Ge decreased their CP4 concentrations. OP results from ascorbic acid (AA), glutathione (GSH) and dithiothreitol (DTT) tests evidenced a clear link between specific inorganic components of CP4 with OPAA and the organic fraction of OPGSH and OPDTT. Correlation analyses were performed for OP indicators and the geochemical patterns of CP4. These were compared with respirable dust samples from prior studies. They indicate that Fe (r = 0.83), pyrite (r = 0.66) and sulphate minerals (r = 0.42) (tracing acidic species from pyrite oxidation), followed by S (r = 0.50) and ash yield (r = 0.46), and, to a much lesser extent, Ti, anatase, U, Mo, V and Pb, are clearly linked with OPAA. Moreover, OPGSH correlation was identified by organic matter, as moisture (r = 0.73), Na (r = 0.56) and B (r = 0.51), and to a lesser extent by the coarse particle size, Ca and carbonate minerals. In addition, Mg (r = 0.70), B (r = 0.47), Na (r = 0.59), Mn, Ba, quartz, particle size and Sr regulate OPDTT correlations. These became more noticeable when the analysis was done for samples of the same type of coal rank, in this case, bituminous.<br />This study was supported by Generalitat de Catalunya (AGAUR 2017 SGR41), Spain; by the National Science Foundation of China (grant 41972180); the Program of Introducing Talents of Discipline to Universities (grant B14031) and Overseas Top Scholars Program for the Recruitment of Global Experts, China; and by the Spanish Ministry of Science and Innovation (Excelencia Severo Ochoa, Project CEX2018-000794-S). Malvern Mastersizer Scirocco 2000 extension measurements were performed at the ICTS NANBIOSIS by the Nanostructured Liquids Unit (U12) of the CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), located at the IQAC-CSIC (Barcelona, Spain). Pedro Trechera is contracted by the ROCD (Reducing risks from Occupational exposure to Coal Dust) project supported by the European Commission Research Fund for Coal and Steel; Grant Agreement Number 754205.

Details

ISSN :
00489697
Volume :
800
Database :
OpenAIRE
Journal :
Science of The Total Environment
Accession number :
edsair.doi.dedup.....fa052587655ba6f423ff0730a2d3ca46