Back to Search Start Over

The Korea Biobank Array: Design and Identification of Coding Variants Associated with Blood Biochemical Traits

Authors :
Kyungheon Yoon
Yun Kyoung Kim
Young-Jin Kim
Min Young Park
Jae Kyung Park
Yontao Lu
Bong-Jo Kim
Sohee Han
Daesub Song
Sanghoon Moon
Dong Mun Shin
Mi Yeong Hwang
Taejoon Park
Hye-Mi Jang
Jong Eun Lee
Source :
Scientific Reports, Scientific Reports, Vol 9, Iss 1, Pp 1-11 (2019)
Publication Year :
2019
Publisher :
Nature Publishing Group UK, 2019.

Abstract

We introduce the design and implementation of a new array, the Korea Biobank Array (referred to as KoreanChip), optimized for the Korean population and demonstrate findings from GWAS of blood biochemical traits. KoreanChip comprised >833,000 markers including >247,000 rare-frequency or functional variants estimated from >2,500 sequencing data in Koreans. Of the 833 K markers, 208 K functional markers were directly genotyped. Particularly, >89 K markers were presented in East Asians. KoreanChip achieved higher imputation performance owing to the excellent genomic coverage of 95.38% for common and 73.65% for low-frequency variants. From GWAS (Genome-wide association study) using 6,949 individuals, 28 associations were successfully recapitulated. Moreover, 9 missense variants were newly identified, of which we identified new associations between a common population-specific missense variant, rs671 (p.Glu457Lys) of ALDH2, and two traits including aspartate aminotransferase (P = 5.20 × 10−13) and alanine aminotransferase (P = 4.98 × 10−8). Furthermore, two novel missense variants of GPT with rare frequency in East Asians but extreme rarity in other populations were associated with alanine aminotransferase (rs200088103; p.Arg133Trp, P = 2.02 × 10−9 and rs748547625; p.Arg143Cys, P = 1.41 × 10−6). These variants were successfully replicated in 6,000 individuals (P = 5.30 × 10−8 and P = 1.24 × 10−6). GWAS results suggest the promising utility of KoreanChip with a substantial number of damaging variants to identify new population-specific disease-associated rare/functional variants.

Details

Language :
English
ISSN :
20452322
Volume :
9
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....fa2f954a6afb05974a962ffada037486