Back to Search Start Over

Continental-scale analysis of shallow and deep groundwater contributions to streams

Authors :
Zachary C. Johnson
John W. Lane
Ashley M. Helton
Martin A. Briggs
Danielle K. Hare
Source :
Nature Communications, Vol 12, Iss 1, Pp 1-10 (2021), Nature Communications
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Groundwater discharge generates streamflow and influences stream thermal regimes. However, the water quality and thermal buffering capacity of groundwater depends on the aquifer source-depth. Here, we pair multi-year air and stream temperature signals to categorize 1729 sites across the continental United States as having major dam influence, shallow or deep groundwater signatures, or lack of pronounced groundwater (atmospheric) signatures. Approximately 40% of non-dam stream sites have substantial groundwater contributions as indicated by characteristic paired air and stream temperature signal metrics. Streams with shallow groundwater signatures account for half of all groundwater signature sites and show reduced baseflow and a higher proportion of warming trends compared to sites with deep groundwater signatures. These findings align with theory that shallow groundwater is more vulnerable to temperature increase and depletion. Streams with atmospheric signatures tend to drain watersheds with low slope and greater human disturbance, indicating reduced stream-groundwater connectivity in populated valley settings.<br />Groundwater discharge generates streamflow and influences stream thermal regimes. Classifying more than 1700 streams across the US by using an empirically-based approach the study shows that the vulnerability of streams to stressors depends on the aquifer source-depth of groundwater discharge

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....fa40fe22bac4d1a2b19891c0b483ac4f