Back to Search Start Over

HupB, a Nucleoid-Associated Protein of Mycobacterium tuberculosis, Is Modified by Serine/Threonine Protein Kinases In Vivo

Authors :
Vibha Tandon
Kirti Sharma
Valakunja Nagaraja
Soumitra Ghosh
Andaleeb Sajid
Yogendra Singh
Ramandeep Singh
Gunjan Arora
Meetu Gupta
Source :
Journal of Bacteriology. 196:2646-2657
Publication Year :
2014
Publisher :
American Society for Microbiology, 2014.

Abstract

HU, a widely conserved bacterial histone-like protein, regulates many genes, including those involved in stress response and virulence. Whereas ample data are available on HU-DNA communication, the knowledge on how HU perceives a signal and transmit it to DNA remains limited. In this study, we identify HupB, the HU homolog of the human pathogen Mycobacterium tuberculosis , as a component of serine/threonine protein kinase (STPK) signaling. HupB is extracted in its native state from the exponentially growing cells of M. tuberculosis H 37 Ra and is shown to be phosphorylated on both serine and threonine residues. The STPKs capable of modifying HupB are determined in vitro and the residues modified by the STPKs are identified for both in vivo and the in vitro proteins through mass spectrometry. Of the identified phosphosites, Thr 65 and Thr 74 in the DNA-embracing β-strand of the N-terminal domain of HupB (N-HupB) are shown to be crucial for its interaction with DNA. In addition, Arg 55 is also identified as an important residue for N-HupB–DNA interaction. N-HupB is shown to have a diminished interaction with DNA after phosphorylation. Furthermore, hupB is shown to be maximally expressed during the stationary phase in M. tuberculosis H 37 Ra, while HupB kinases were found to be constitutively expressed (PknE and PknF) or most abundant during the exponential phase (PknB). In conclusion, HupB, a DNA-binding protein, with an ability to modulate chromatin structure is proposed to work in a growth-phase-dependent manner through its phosphorylation carried out by the mycobacterial STPKs.

Details

ISSN :
10985530 and 00219193
Volume :
196
Database :
OpenAIRE
Journal :
Journal of Bacteriology
Accession number :
edsair.doi.dedup.....fa9c0b0ad6188662ef15089230e65ddd
Full Text :
https://doi.org/10.1128/jb.01625-14