Back to Search
Start Over
White dwarfs in the building blocks of the Galactic spheroid
- Source :
- Astronomy & Astrophysics (0004-6361), 607, A99, Astronomy & Astrophysics, 607, pp. 1-16, Astronomy & astrophysics, 607:A99. EDP Sciences, Astronomy & Astrophysics, 607, 1-16
- Publication Year :
- 2017
-
Abstract
- The galactic halo likely grew over time in part by assembling smaller galaxies, the so-called building blocks. We investigate if the properties of these building blocks are reflected in the halo white dwarf (WD) population in the Solar neighborhood. Furthermore, we compute the halo WD luminosity functions (WDLFs) for four major building blocks of five cosmologically motivated stellar haloes. We couple the SeBa binary population synthesis model to the Munich-Groningen semi-analytic galaxy formation model, applied to the high-resolution Aquarius dark matter simulations. Although the semi-analytic model assumes an instantaneous recycling approximation, we model the evolution of zero-age main sequence stars to WDs, taking age and metallicity variations of the population into account. Although the majority of halo stars is old and metal-poor and therefore the WDs in the different building blocks have similar properties (including present-day luminosity), we find in our models that the WDs originating from building blocks that have young and/or metal-rich stars can be distinguished from WDs that were born in other building blocks. In practice however, it will be hard to prove that these WDs really originate from different building blocks, as the variations in the halo WD population due to binary WD mergers result in similar effects. The five joined stellar halo WD populations that we modelled result in WDLFs that are very similar to each other. We find that simple models with a Kroupa or Salpeter initial mass function (IMF) fit the observed luminosity function slightly better, since the Chabrier IMF is more top-heavy, although this result is dependent on our choice of the stellar halo mass density in the Solar neighborhood.<br />Comment: 16 pages, 16 figures, published in Astronomy & Astrophysics
- Subjects :
- SOLAR NEIGHBORHOOD
Initial mass function
stars: luminosity function
METAL-POOR STARS
Metallicity
INITIAL MASS FUNCTION
Astronomy
COOLING SEQUENCES
FOS: Physical sciences
POPULATION SYNTHESIS
Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
01 natural sciences
Galactic halo
GALAXY FORMATION MODEL
0103 physical sciences
Galaxy formation and evolution
Astrophysics::Solar and Stellar Astrophysics
010303 astronomy & astrophysics
GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries)
Astrophysics::Galaxy Astrophysics
Luminosity function (astronomy)
white dwarfs
Physics
binaries: close
CLUSTER GALAXIES
010308 nuclear & particles physics
White dwarf
Astronomy and Astrophysics
Astrophysics - Astrophysics of Galaxies
Galaxy
Galaxy: halo
COLD DARK-MATTER
Space and Planetary Science
mass function
STELLAR EVOLUTION
Astrophysics of Galaxies (astro-ph.GA)
MILKY-WAY SATELLITES
Halo
Subjects
Details
- Language :
- English
- ISSN :
- 00046361 and 14320746
- Database :
- OpenAIRE
- Journal :
- Astronomy & Astrophysics (0004-6361), 607, A99, Astronomy & Astrophysics, 607, pp. 1-16, Astronomy & astrophysics, 607:A99. EDP Sciences, Astronomy & Astrophysics, 607, 1-16
- Accession number :
- edsair.doi.dedup.....faaec6744c23896c6a333139c0a694d8