Back to Search Start Over

Amperometric measurement of glutamate release modulation by gabapentin and pregabalin in rat neocortical slices: role of voltage-sensitive Ca2+ α2δ-1 subunit

Authors :
Greg A. Gerhardt
Francois Pomerleau
David J. Dooley
Jorge E. Quintero
Peter Huettl
Source :
The Journal of pharmacology and experimental therapeutics. 338(1)
Publication Year :
2011

Abstract

Gabapentin (GBP; Neurontin) and pregabalin (PGB; Lyrica, S-(+)-3-isobutylgaba) are used clinically to treat several disorders associated with excessive or inappropriate excitability, including epilepsy; pain from diabetic neuropathy, postherpetic neuralgia, and fibromyalgia; and generalized anxiety disorder. The molecular basis for these drugs' therapeutic effects are believed to involve the interaction with the auxiliary α(2)δ subunit of voltage-sensitive Ca(2+) channel (VSCC) translating into a modulation of pathological neurotransmitter release. Glutamate as the primary excitatory neurotransmitter in the mammalian central nervous system contributes, under conditions of excessive glutamate release, to neurological and psychiatric disorders. This study used enzyme-based microelectrode arrays to directly measure extracellular glutamate release in rat neocortical slices and determine the modulation of this release by GBP and PGB. Both drugs attenuated K(+)-evoked glutamate release without affecting basal glutamate levels. PGB (0.1-100 μM) exhibited concentration-dependent inhibition of K(+)-evoked glutamate release with an IC(50) value of 5.3 μM. R-(-)-3-Isobutylgaba, the enantiomer of PGB, did not significantly reduce K(+)-evoked glutamate release. The decrease of K(+)-evoked glutamate release by PGB was blocked by the l-amino acid l-isoleucine, a potential endogenous ligand of the α(2)δ subunit. In neocortical slices from transgenic mice having a point mutation (i.e., R217A) of the α(2)δ-1 (subtype) subunit of VSCC, PGB did not affect K(+)-evoked glutamate release yet inhibited this release in wild-type mice. The results show that GBP and PGB attenuated stimulus-evoked glutamate release in rodent neocortical slices and that the α(2)δ-1 subunit of VSCC appears to mediate this effect.

Details

ISSN :
15210103
Volume :
338
Issue :
1
Database :
OpenAIRE
Journal :
The Journal of pharmacology and experimental therapeutics
Accession number :
edsair.doi.dedup.....faba37fd8e72c13c737f45711e4bc3e2