Back to Search Start Over

Chemical activation of divergent protein tyrosine phosphatase domains with cyanine-based biarsenicals

Authors :
Anthony C. Bishop
Bailey A. Plaman
Wai Cheung Chan
Source :
Scientific Reports, Vol 9, Iss 1, Pp 1-14 (2019), Scientific Reports
Publication Year :
2019
Publisher :
Nature Publishing Group, 2019.

Abstract

Strategies for the direct chemical activation of specific signaling proteins could provide powerful tools for interrogating cellular signal transduction. However, targeted protein activation is chemically challenging, and few broadly applicable activation strategies for signaling enzymes have been developed. Here we report that classical protein tyrosine phosphatase (PTP) domains from multiple subfamilies can be systematically sensitized to target-specific activation by the cyanine-based biarsenical compounds AsCy3 and AsCy5. Engineering of the activatable PTPs (actPTPs) is achieved by the introduction of three cysteine residues within a conserved loop of the PTP domain, and the positions of the sensitizing mutations are readily identifiable from primary sequence alignments. In the current study we have generated and characterized actPTP domains from three different subfamilies of both receptor and non-receptor PTPs. Biarsenical-induced stimulation of the actPTPs is rapid and dose-dependent, and is operative with both purified enzymes and complex proteomic mixtures. Our results suggest that a substantial fraction of the classical PTP family will be compatible with the act-engineering approach, which provides a novel chemical-biological tool for the control of PTP activity and the study of PTP function.

Details

Language :
English
ISSN :
20452322
Volume :
9
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....fabc635f2cb164a7c441e94c5092d15e
Full Text :
https://doi.org/10.1038/s41598-019-52002-1