Back to Search
Start Over
Structural Diversity and Trends in Properties of an Array of Hydrogen-Rich Ammonium Metal Borohydrides
- Source :
- Grinderslev, J B, Jepsen, L H, Lee, Y S, Møller, K T, Cho, Y W, Černý, R & Jensen, T R 2020, ' Structural Diversity and Trends in Properties of an Array of Hydrogen-Rich Ammonium Metal Borohydrides ', Inorganic Chemistry, vol. 59, no. 17, pp. 12733-12747 . https://doi.org/10.1021/acs.inorgchem.0c01797, Inorganic Chemistry, Vol. 59, No 17 (2020) pp. 12733-12747
- Publication Year :
- 2020
-
Abstract
- Metal borohydrides are a fascinating and continuously expanding class of materials, showing promising applications within many different fields of research. This study presents 17 derivatives of the hydrogen-rich ammonium borohydride, NH4BH4, which all exhibit high gravimetric hydrogen densities (>9.2 wt % of H2). A detailed insight into the crystal structures combining X-ray diffraction and density functional theory calculations exposes an intriguing structural variety ranging from three-dimensional (3D) frameworks, 2D-layered, and 1D-chainlike structures to structures built from isolated complex anions, in all cases containing NH4+ countercations. Dihydrogen interactions between complex NH4+ and BH4- ions contribute to the structural diversity and flexibility, while inducing an inherent instability facilitating hydrogen release. The thermal stability of the ammonium metal borohydrides, as a function of a range of structural properties, is analyzed in detail. The Pauling electronegativity of the metal, the structural dimensionality, the dihydrogen bond length, the relative amount of NH4+ to BH4-, and the nearest coordination sphere of NH4+ are among the most important factors. Hydrogen release usually occurs in three steps, involving new intermediate compounds, observed as crystalline, polymeric, and amorphous materials. This research provides new opportunities for the design and tailoring of novel functional materials with interesting properties.
- Subjects :
- Coordination sphere
Hydrogen
010405 organic chemistry
chemistry.chemical_element
Crystal structure
ddc:500.2
010402 general chemistry
Borohydride
01 natural sciences
0104 chemical sciences
Inorganic Chemistry
Electronegativity
Metal
chemistry.chemical_compound
chemistry
Chemical physics
visual_art
visual_art.visual_art_medium
Dihydrogen bond
Density functional theory
Physical and Theoretical Chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 00201669
- Database :
- OpenAIRE
- Journal :
- Grinderslev, J B, Jepsen, L H, Lee, Y S, Møller, K T, Cho, Y W, Černý, R & Jensen, T R 2020, ' Structural Diversity and Trends in Properties of an Array of Hydrogen-Rich Ammonium Metal Borohydrides ', Inorganic Chemistry, vol. 59, no. 17, pp. 12733-12747 . https://doi.org/10.1021/acs.inorgchem.0c01797, Inorganic Chemistry, Vol. 59, No 17 (2020) pp. 12733-12747
- Accession number :
- edsair.doi.dedup.....fae51717d438784e05b5384d37e0477c
- Full Text :
- https://doi.org/10.1021/acs.inorgchem.0c01797