Back to Search
Start Over
Determining the systemic redshift of Lyman α emitters with neural networks and improving the measured large-scale clustering
- Source :
- Monthly notices of the Royal Astronomical Society, 2021, Vol.500(1), pp.603-626 [Peer Reviewed Journal]
- Publication Year :
- 2021
- Publisher :
- Oxford University Press, 2021.
-
Abstract
- We explore how to mitigate the clustering distortions in Lyman-$\alpha$ emitters (LAEs) samples caused by the miss-identification of the Lyman-$\alpha$ (Ly$\alpha$) wavelength in their Ly$\alpha$ line profiles. We use the Ly$\alpha$ line profiles from our previous LAE theoretical model that includes radiative transfer in the interstellar and intergalactic mediums. We introduce a novel approach to measure the systemic redshift of LAEs from their Ly$\alpha$ line using neural networks. In detail, we assume that, for a fraction of the whole LAE population their systemic redshift is determined precisely through other spectral features. We then use this subset to train a neural network that predicts the Ly$\alpha$ wavelength given a Ly$\alpha$ line profile. We test two different training sets: i) the LAEs are selected homogeneously and ii) only the brightest LAEs are selected. In comparison with previous approaches in the literature, our methodology improves significantly both accuracy and precision in determining the Ly$\alpha$ wavelength. In fact, after applying our algorithm in ideal Ly$\alpha$ line profiles, we recover the clustering unperturbed down to 1cMpc/h. Then, we test the performance of our methodology in realistic Ly$\alpha$ line profiles by downgrading their quality. The machine learning techniques work well even if the Ly$\alpha$ line profile quality is decreased considerably. We conclude that LAE surveys such as HETDEX would benefit from determining with high accuracy the systemic redshift of a subpopulation and applying our methodology to estimate the systemic redshift of the rest of the galaxy sample.<br />Comment: 24 Pages, 16 figures, a lot of fun
- Subjects :
- Physics
education.field_of_study
Cosmology and Nongalactic Astrophysics (astro-ph.CO)
010308 nuclear & particles physics
Population
FOS: Physical sciences
Astronomy and Astrophysics
Scale (descriptive set theory)
Astrophysics::Cosmology and Extragalactic Astrophysics
Astrophysics
Astrophysics - Astrophysics of Galaxies
01 natural sciences
Redshift
Galaxy
Space and Planetary Science
Astrophysics of Galaxies (astro-ph.GA)
0103 physical sciences
Radiative transfer
Intergalactic travel
education
Cluster analysis
010303 astronomy & astrophysics
Astrophysics - Cosmology and Nongalactic Astrophysics
Line (formation)
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Monthly notices of the Royal Astronomical Society, 2021, Vol.500(1), pp.603-626 [Peer Reviewed Journal]
- Accession number :
- edsair.doi.dedup.....faec046447f6da74d90dd30b25a2d23c