Back to Search
Start Over
Vanishing of (co)homology over deformations of Cohen-Macaulay local rings of minimal multiplicity
- Publication Year :
- 2017
-
Abstract
- Let $ R $ be a $ d $-dimensional Cohen-Macaulay (CM) local ring of minimal multiplicity. Set $ S := R/({\bf f}) $, where $ {\bf f} := f_1,\ldots,f_c $ is an $ R $-regular sequence. Suppose $ M $ and $ N $ are maximal CM $ S $-modules. It is shown that if $ \mathrm{Ext}_S^i(M,N) = 0 $ for some $ (d+c+1) $ consecutive values of $ i \geqslant 2 $, then $ \mathrm{Ext}_S^i(M,N) = 0 $ for all $ i \geqslant 1 $. Moreover, if this holds true, then either $ \mathrm{projdim}_R(M) $ or $ \mathrm{injdim}_R(N) $ is finite. In addition, a counterpart of this result for Tor-modules is provided. Furthermore, we give a number of necessary and sufficient conditions for a CM local ring of minimal multiplicity to be regular or Gorenstein. These conditions are based on vanishing of certain Exts or Tors involving homomorphic images of syzygy modules of the residue field.<br />20 pages, Final version after revision, To appear in Glasgow Mathematical Journal
- Subjects :
- Hilbert's syzygy theorem
Mathematics::Commutative Algebra
General Mathematics
010102 general mathematics
Local ring
Multiplicity (mathematics)
Homology (mathematics)
Commutative Algebra (math.AC)
Mathematics - Commutative Algebra
01 natural sciences
Combinatorics
Residue field
0103 physical sciences
FOS: Mathematics
010307 mathematical physics
0101 mathematics
Primary 13D07, Secondary 13D02, 13H05, 13H10
Mathematics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....fb23f544b2345040f9a05d93be357d40