Back to Search Start Over

Multi-Channel Generative Framework and Supervised Learning for Anomaly Detection in Surveillance Videos

Authors :
Jacques Boonaert
Tuan-Hung Vu
Abdelmalik Taleb-Ahmed
Sébastien Ambellouis
Centre for Digital Systems (CERI SN)
Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Laboratoire Électronique Ondes et Signaux pour les Transports (COSYS-LEOST )
Université de Lille-Université Gustave Eiffel
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
COMmunications NUMériques - IEMN (COMNUM - IEMN)
Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE)
INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
Centre for Digital Systems (CERI SN - IMT Nord Europe)
Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Nord Europe)
Université Gustave Eiffel
Université catholique de Lille (UCL)-Université catholique de Lille (UCL)
INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN)
Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
Source :
Sensors, Volume 21, Issue 9, Sensors, MDPI, 2021, 21 (9), pp.3179. ⟨10.3390/s21093179⟩, Sensors, 2021, 21 (9), pp.3179. ⟨10.3390/s21093179⟩, Sensors (Basel, Switzerland), Sensors, Vol 21, Iss 3179, p 3179 (2021)
Publication Year :
2021
Publisher :
Multidisciplinary Digital Publishing Institute, 2021.

Abstract

International audience; Recently, most state-of-the-art anomaly detection methods are based on apparent motion and appearance reconstruction networks and use error estimation between generated and real information as detection features. These approaches achieve promising results by only using normal samples for training steps. In this paper, our contributions are two-fold. On the one hand, we propose a flexible multi-channel framework to generate multi-type frame-level features. On the other hand, we study how it is possible to improve the detection performance by supervised learning. The multi-channel framework is based on four Conditional GANs (CGANs) taking various type of appearance and motion information as input and producing prediction information as output. These CGANs provide a better feature space to represent the distinction between normal and abnormal events. Then, the difference between those generative and ground-truth information is encoded by Peak Signal-to-Noise Ratio (PSNR). We propose to classify those features in a classical supervised scenario by building a small training set with some abnormal samples of the original test set of the dataset. The binary Support Vector Machine (SVM) is applied for frame-level anomaly detection. Finally, we use Mask R-CNN as detector to perform object-centric anomaly localization. Our solution is largely evaluated on Avenue, Ped1, Ped2, and ShanghaiTech datasets. Our experiment results demonstrate that PSNR features combined with supervised SVM are better than error maps computed by previous methods. We achieve state-of-the-art performance for frame-level AUC on Ped1 and ShanghaiTech. Especially, for the most challenging Shanghaitech dataset, a supervised training model outperforms up to 9% the state-of-the-art an unsupervised strategy.

Details

Language :
English
ISSN :
14248220
Database :
OpenAIRE
Journal :
Sensors
Accession number :
edsair.doi.dedup.....fb354013f5118b0d4f8ab71ea3caadf9
Full Text :
https://doi.org/10.3390/s21093179