Back to Search Start Over

Preclinical Evaluation of a Novel Lentiviral Vector Driving Lineage-Specific BCL11A Knockdown for Sickle Cell Gene Therapy

Authors :
Olivier Negre
Swaroopa Guda
Christian Brendel
Chad E. Harris
Martin Bentler
Myriam Armant
Melissa Bonner
Erica B. Esrick
John P. Manis
Helene Trebeden-Negre
Axel Schambach
Alla V. Tsytsykova
Danilo Pellin
Michael Rothe
Lauryn Christiansen
Denise Klatt
David A. Williams
Meaghan McGuinness
Daniela Abriss
Geoff Parsons
Gabor Istvan Veres
Source :
Molecular Therapy: Methods & Clinical Development, Vol 17, Iss, Pp 589-600 (2020), Molecular Therapy. Methods & Clinical Development
Publication Year :
2020
Publisher :
Elsevier, 2020.

Abstract

In this work we provide preclinical data to support initiation of a first-in-human trial for sickle cell disease (SCD) using an approach that relies on reversal of the developmental fetal-to-adult hemoglobin switch. Erythroid-specific knockdown of BCL11A via a lentiviral-encoded microRNA-adapted short hairpin RNA (shRNAmiR) leads to reactivation of the gamma-globin gene while simultaneously reducing expression of the pathogenic adult sickle β-globin. We generated a refined lentiviral vector (LVV) BCH-BB694 that was developed to overcome poor vector titers observed in the manufacturing scale-up of the original research-grade LVV. Healthy or sickle cell donor CD34+ cells transduced with Good Manufacturing Practices (GMP)-grade BCH-BB694 LVV achieved high vector copy numbers (VCNs) >5 and gene marking of >80%, resulting in a 3- to 5-fold induction of fetal hemoglobin (HbF) compared with mock-transduced cells without affecting growth, differentiation, and engraftment of gene-modified cells in vitro or in vivo. In vitro immortalization assays, which are designed to measure vector-mediated genotoxicity, showed no increased immortalization compared with mock-transduced cells. Together these data demonstrate that BCH-BB694 LVV is non-toxic and efficacious in preclinical studies, and can be generated at a clinically relevant scale in a GMP setting at high titer to support clinical testing for the treatment of SCD.

Details

Language :
English
ISSN :
23290501
Volume :
17
Database :
OpenAIRE
Journal :
Molecular Therapy: Methods & Clinical Development
Accession number :
edsair.doi.dedup.....fb8fc0356964dd1fbe99f38977e8a66a