Back to Search Start Over

Multitask Learning for VVC Quality Enhancement and Super-Resolution

Authors :
Jean-Francois Travers
Naty Sidaty
Olivier Deforges
Wassim Hamidouche
Charles Bonnineau
Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)
Institut d'Électronique et des Technologies du numéRique (IETR)
Nantes Université (NU)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
TéléDiffusion de France (TDF)
Groupe TDF
Université de Nantes (UN)-Université de Rennes 1 (UR1)
Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Institut National des Sciences Appliquées (INSA)
Source :
PCS, 2021 Picture Coding Symposium (PCS), 2021 Picture Coding Symposium (PCS), Jun 2021, Bristol, United Kingdom. pp.1-5, ⟨10.1109/PCS50896.2021.9477492⟩, 35th Picture Coding Symposium, PCS 2021, 35th Picture Coding Symposium, PCS 2021, Jun 2021, Bristol, United Kingdom. pp.9477492, ⟨10.1109/PCS50896.2021.9477492⟩
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

The latest video coding standard, called versatile video coding (VVC), includes several novel and refined coding tools at different levels of the coding chain. These tools bring significant coding gains with respect to the previous standard, high efficiency video coding (HEVC). However, the encoder may still introduce visible coding artifacts, mainly caused by coding decisions applied to adjust the bitrate to the available bandwidth. Hence, pre and post-processing techniques are generally added to the coding pipeline to improve the quality of the decoded video. These methods have recently shown outstanding results compared to traditional approaches, thanks to the recent advances in deep learning. Generally, multiple neural networks are trained independently to perform different tasks, thus omitting to benefit from the redundancy that exists between the models. In this paper, we investigate a learning-based solution as a post-processing step to enhance the decoded VVC video quality. Our method relies on multitask learning to perform both quality enhancement and super-resolution using a single shared network optimized for multiple degradation levels. The proposed solution enables a good performance in both mitigating coding artifacts and super-resolution with fewer network parameters compared to traditional specialized architectures.<br />Comment: accepted as a conference paper to Picture Coding Symposium (PCS) 2021

Details

Database :
OpenAIRE
Journal :
PCS, 2021 Picture Coding Symposium (PCS), 2021 Picture Coding Symposium (PCS), Jun 2021, Bristol, United Kingdom. pp.1-5, ⟨10.1109/PCS50896.2021.9477492⟩, 35th Picture Coding Symposium, PCS 2021, 35th Picture Coding Symposium, PCS 2021, Jun 2021, Bristol, United Kingdom. pp.9477492, ⟨10.1109/PCS50896.2021.9477492⟩
Accession number :
edsair.doi.dedup.....fbe936f62908c5c885ce4de84f095684
Full Text :
https://doi.org/10.48550/arxiv.2104.08319