Back to Search Start Over

A new non-convex framework to improve asymptotical knowledge on generic stochastic gradient descent

Authors :
Fest, Jean-Baptiste
Repetti, Audrey
Chouzenoux, Emilie
OPtimisation Imagerie et Santé (OPIS)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-CentraleSupélec-Université Paris-Saclay
Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay
Heriot-Watt University [Edinburgh] (HWU)
European Project: ERC-2019-STG-850925,MAJORIS(2020)
Source :
Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2023), MLSP 2023-IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2023-IEEE International Workshop on Machine Learning for Signal Processing, Sep 2023, Rome, Italy
Publication Year :
2023
Publisher :
arXiv, 2023.

Abstract

International audience; Stochastic gradient optimization methods are broadly used to minimize non-convex smooth objective functions, for instance when training deep neural networks. However, theoretical guarantees on the asymptotic behaviour of these methods remain scarce. Especially, ensuring almost-sure convergence of the iterates to a stationary point is quite challenging. In this work, we introduce a new Kurdyka-Łojasiewicz theoretical framework to analyze asymptotic behavior of stochastic gradient descent (SGD) schemes when minimizing non-convex smooth objectives. In particular, our framework provides new almost-sure convergence results, on iterates generated by any SGD method satisfying mild conditional descent conditions. We illustrate the proposed framework by means of several toy simulation examples. We illustrate the role of the considered theoretical assumptions, and investigate how SGD iterates are impacted whether these assumptions are either fully or partially satisfied.

Details

Database :
OpenAIRE
Journal :
Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2023), MLSP 2023-IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2023-IEEE International Workshop on Machine Learning for Signal Processing, Sep 2023, Rome, Italy
Accession number :
edsair.doi.dedup.....fc2c68d0c68c70c3f50f74f33f6927d6
Full Text :
https://doi.org/10.48550/arxiv.2307.06987