Back to Search Start Over

X-ray spectroscopy evidence for plasma shell formation in experiments modeling accretion columns in young stars

Authors :
G. Revet
Sophia Chen
E. D. Filippov
B. Khiar
Drew Higginson
Andrea Ciardi
Julien Fuchs
D. Khaghani
I. Yu. Skobelev
S. A. Pikuz
Joint Institute for High Temperatures of the RAS (JIHT)
Russian Academy of Sciences [Moscow] (RAS)
Laboratoire pour l'utilisation des lasers intenses (LULI)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM)
CentraleSupélec
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP)
Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Paris (ENS-PSL)
Source :
Matter and Radiation at Extremes, Matter and Radiation at Extremes, AIP Publishing 2019, 4 (6), pp.064402. ⟨10.1063/1.5124350⟩, Matter and Radiation at Extremes, 2019, 4 (6), pp.064402. ⟨10.1063/1.5124350⟩, Matter and Radiation at Extremes, Vol 4, Iss 6, Pp 064402-064402-8 (2019)
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Recent achievements in laboratory astrophysics experiments with high-power lasers have allowed progress in our understanding of the early stages of star formation. In particular, we have recently demonstrated the possibility of simulating in the laboratory the process of the accretion of matter on young stars [G. Revet et al., Sci. Adv. 3, e1700982 (2017)]. The present paper focuses on x-ray spectroscopy methods that allow us to investigate the complex plasma hydrodynamics involved in such experiments. We demonstrate that we can infer the formation of a plasma shell, surrounding the accretion column at the location of impact with the stellar surface, and thus resolve the present discrepancies between mass accretion rates derived from x-ray and optical-radiation astronomical observations originating from the same object. In our experiments, the accretion column is modeled by having a collimated narrow (1 mm diameter) plasma stream first propagate along the lines of a large-scale external magnetic field and then impact onto an obstacle, mimicking the high-density region of the stellar chromosphere. A combined approach using steady-state and quasi-stationary models was successfully applied to measure the parameters of the plasma all along its propagation, at the impact site, and in the structure surrounding the impact region. The formation of a hot plasma shell, surrounding the denser and colder core, formed by the incoming stream of matter is observed near the obstacle using x-ray spatially resolved spectroscopy.

Details

Language :
English
ISSN :
2468080X
Database :
OpenAIRE
Journal :
Matter and Radiation at Extremes, Matter and Radiation at Extremes, AIP Publishing 2019, 4 (6), pp.064402. ⟨10.1063/1.5124350⟩, Matter and Radiation at Extremes, 2019, 4 (6), pp.064402. ⟨10.1063/1.5124350⟩, Matter and Radiation at Extremes, Vol 4, Iss 6, Pp 064402-064402-8 (2019)
Accession number :
edsair.doi.dedup.....fc7320cd378304b359017f08f34c6853