Back to Search Start Over

Ultrahigh compressibility and superior elasticity carbon framework derived from shaddock peel for high-performance pressure sensing

Authors :
Mengqi Tang
Douyong Min
Yan Jiang
Na Zheng
Weixin Wu
Changzhou Chen
Source :
RSC Advances. 11:28621-28631
Publication Year :
2021
Publisher :
Royal Society of Chemistry (RSC), 2021.

Abstract

Shaddock peel, a crop by-product mainly composed of cellulose, hemicellulose, lignin, and pectin, was developed as a flexible sensitive material for detecting environmental external pressure. Firstly, a natural carbon framework (C-SPF) with high conductivity was prepared using hydrothermal treatment followed by carbonization. Then, the PDMS elastomer was coated on the C-SPF instead of dense filling to convert the brittle C-SPF into elastic porous materials (M-SPF). Benefiting from the large deformation space of the porous framework and the stable interactions between PDMS and C-SPF, M-SPF exhibited ultrahigh coercibility (up to 99.0% strain) and high elasticity (99.4% height retention for 10 000 cycles at 50.0% strain). The M-SPF-based pressure sensor also exhibited a quick response (loading and unloading times were 20 ms and 30 ms), high sensitivity (63.4 kPa−1), wide working range (from 0 to 800 kPa), and stable stress-electric current response (10 000 cycles). These advantages open a door to a variety of applications, such as flexible wearable devices, which demonstrated human physiological signal monitoring. The low cost, simple design and portable use of piezoresistive sensors highlight the potential application of the crop by-product shaddock peel as a high-value material.

Details

ISSN :
20462069
Volume :
11
Database :
OpenAIRE
Journal :
RSC Advances
Accession number :
edsair.doi.dedup.....fc7c26839a01da6ad96594e8e3c03c57