Back to Search Start Over

Magnetic patterning: local manipulation of the intergranular exchange coupling via grain boundary engineering

Authors :
Jung-Wei Liao
Shen-Chuan Lo
Liang-Wei Wang
Hsiu-Hau Lin
Cheng-Yu Hsieh
Mu-Tung Chang
Kuo-Feng Huang
Yen-Chun Huang
Chih-Huang Lai
Jun Yuan
Wei-Chih Wen
Source :
Scientific Reports
Publication Year :
2015
Publisher :
Nature Publishing Group, 2015.

Abstract

Magnetic patterning, with designed spatial profile of the desired magnetic properties, has been a rising challenge for developing magnetic devices at nanoscale. Most existing methods rely on locally modifying magnetic anisotropy energy or saturation magnetization and thus post stringent constraints on the adaptability in diverse applications. We propose an alternative route for magnetic patterning: by manipulating the local intergranular exchange coupling to tune lateral magnetic properties. As demonstration, the grain boundary structure of Co/Pt multilayers is engineered by thermal treatment, where the stress state of the multilayers and thus the intergranular exchange coupling can be modified. With Ag passivation layers on top of the Co/Pt multilayers, we can hinder the stress relaxation and grain boundary modification. Combining the pre-patterned Ag passivation layer with thermal treatment, we can design spatial variations of the magnetic properties by tuning the intergranular exchange coupling, which diversifies the magnetic patterning process and extends its feasibility for varieties of new devices.

Details

Language :
English
ISSN :
20452322
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....fc7d3bfa6de33654187091d144174451
Full Text :
https://doi.org/10.1038/srep11904