Back to Search
Start Over
3-difference cordiality of some corona graphs
- Source :
- Proyecciones (Antofagasta), Volume: 38, Issue: 1, Pages: 83-96, Published: MAR 2019, Proyecciones (Antofagasta) v.38 n.1 2019, SciELO Chile, CONICYT Chile, instacron:CONICYT
- Publication Year :
- 2019
- Publisher :
- Universidad Católica del Norte, Departamento de Matemáticas, 2019.
-
Abstract
- Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map where k is an integer 2 ≤ k ≤ p. For each edge uv, assign the label |f (u) − f (v)|. f is called k-difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the umber of vertices labelled with x, ef (1) and ef (0) respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate 3-difference cordial labeling behavior of Tn ʘK1, Tn ʘ2K1, Tn ʘK2, A(Tn)ʘK1, A(Tn)ʘ 2K1, A(Tn) ʘ K2.
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Proyecciones (Antofagasta), Volume: 38, Issue: 1, Pages: 83-96, Published: MAR 2019, Proyecciones (Antofagasta) v.38 n.1 2019, SciELO Chile, CONICYT Chile, instacron:CONICYT
- Accession number :
- edsair.doi.dedup.....fc9eb06b5243007ff64c1944137c6754