Back to Search Start Over

A Novikov fundamental group

Authors :
R Golovko
J-F Barraud
Hông Vân Lê
Agnès Gadbled
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Uppsala Universitet [Uppsala]
Département de mathématiques Université Libre de Bruxelles
Université libre de Bruxelles (ULB)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Source :
International Mathematics Research Notices, International Mathematics Research Notices, 2019, ⟨10.1093/imrn/rnz032⟩, International Mathematics Research Notices, Oxford University Press (OUP), 2019, ⟨10.1093/imrn/rnz032⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Given a $1$-cohomology class $u$ on a closed manifold $M$, we define a Novikov fundamental group associated to $u$, generalizing the usual fundamental group in the same spirit as Novikov homology generalizes Morse homology to the case of non exact $1$-forms. As an application, lower bounds for the minimal number of index $1$ and $2$ critical points of Morse closed $1$-forms are obtained, that are different in nature from those derived from the Novikov homology.<br />39 pages, 4 drawings (inkscape) Added a discussion of an Hurewicz morphism and examples

Details

Language :
English
ISSN :
10737928 and 16870247
Database :
OpenAIRE
Journal :
International Mathematics Research Notices, International Mathematics Research Notices, 2019, ⟨10.1093/imrn/rnz032⟩, International Mathematics Research Notices, Oxford University Press (OUP), 2019, ⟨10.1093/imrn/rnz032⟩
Accession number :
edsair.doi.dedup.....fcede436ed1562a0d5fcd0e78e1e8718