Back to Search Start Over

Ultrastructure evidence for vesicles and double-membrane structures involved in cytoplasmic elimination during spermiogenesis in large yellow croaker, Larimichthys crocea (Teleostei, Perciformes, Scienidae)

Authors :
Chen Du
Cheng Liu
Li Wang
Jun-Quan Zhu
Shan Jin
Shengyu Luo
Xinming Gao
Source :
Micron (Oxford, England : 1993). 150
Publication Year :
2021

Abstract

Spermatids eliminate excess cytoplasm to form streamlined sperm during spermiogenesis, which mechanism is insufficiently elucidated in fish. In this study, we investigated the cytoplasmic elimination procedure in spermatid during spermiogenesis in the large yellow croaker (Larimichthys crocea) using transmission electron microscopy. The early spermatid is subrotund with a centrally located nucleus. With further development, nucleus polarizes into one side of the cell while the cytoplasm with numerous vesicles near the membrane migrates to the caudal region. Furthermore, exocytosis-like structures were detected in middle spermatid. In late spermatid, the vesicles are reduced and rarely observed. These findings indicate that vesicles may be involved in cytoplasmic elimination possibly via exocytosis. In the later spermatid, a double-membrane, autophagosome-like structure envelopes the cytoplasm, which may develop into a single-membrane structure, and gets discarded from the cell as a residual body from the caudal region. This suggests its potential functions in the formation of residual body and cytoplasmic elimination. Overall, our results revealed that polarized development of spermatid causes polarized distribution of cytoplasm necessary for cytoplasmic elimination. Moreover, they provide ultrastructure evidence for vesicles and double-membrane structures involved in discarding spermatid cytoplasm in large yellow croaker, thus offering novel insights into cytoplasmic elimination during spermiogenesis in fish.

Details

ISSN :
18784291
Volume :
150
Database :
OpenAIRE
Journal :
Micron (Oxford, England : 1993)
Accession number :
edsair.doi.dedup.....fd2a0eda9bb242c47b7e3fc184c698d6