Back to Search Start Over

A Reduction of Integer Factorization to Modular Tetration

Authors :
Markus Hittmeir
Source :
International Journal of Foundations of Computer Science. 31:461-481
Publication Year :
2020
Publisher :
World Scientific Pub Co Pte Lt, 2020.

Abstract

Let $a,k\in\mathbb{N}$. For the $k-1$-th iterate of the exponential function $x\mapsto a^x$, also known as tetration, we write \[ ^k a:=a^{a^{.^{.^{.^{a}}}}}. \] In this paper, we show how an efficient algorithm for tetration modulo natural numbers $N$ may be used to compute the prime factorization of $N$. In particular, we prove that the problem of computing the squarefree part of integers is deterministically polynomial-time reducible to modular tetration.<br />Comment: 18 pages

Details

ISSN :
17936373 and 01290541
Volume :
31
Database :
OpenAIRE
Journal :
International Journal of Foundations of Computer Science
Accession number :
edsair.doi.dedup.....fd5f77ea8663f2e7fbe1e174e9de3f48