Back to Search Start Over

MiR-23a facilitates the replication of HSV-1 through the suppression of interferon regulatory factor 1

Authors :
Yixuan Li
Huahui Sun
Hongxia Fan
Chun Mei Wang
Hua Tang
Min Liu
Jing Ru
Source :
PLoS ONE, PLoS ONE, Vol 9, Iss 12, p e114021 (2014)
Publication Year :
2014
Publisher :
Public Library of Science (PLoS), 2014.

Abstract

MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression. It has been reported that miRNAs are involved in host-virus interaction, but evidence that cellular miRNAs promote virus replication has been limited. Here, we found that miR-23a promoted the replication of human herpes simplex virus type 1 (HSV-1) in HeLa cells, as demonstrated by a plaque-formation assay and quantitative real-time PCR. Furthermore, interferon regulatory factor 1 (IRF1), an innate antiviral molecule, is targeted by miR-23a to facilitate viral replication. MiR-23a binds to the 3'UTR of IRF1 and down-regulates its expression. Suppression of IRF1 expression reduced RSAD2 gene expression, augmenting HSV-1 replication. Ectopic expression of IRF1 abrogated the promotion of HSV-1 replication induced by miR-23a. Notably, IRF1 contributes to innate antiviral immunity by binding to IRF-response elements to regulate the expression of interferon-stimulated genes (ISGs) and apoptosis, revealing a complex interaction between miR-23a and HSV-1. MiR-23a thus contributes to HSV-1 replication through the regulation of the IRF1-mediated antiviral signal pathway, which suggests that miR-23a may represent a promising target for antiviral treatments.

Details

ISSN :
19326203
Volume :
9
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....fd6adb94add22363e637d53f0523972e