Back to Search Start Over

The size distribution of desert dust aerosols and its impact on the Earth system

Authors :
Mark Flanner
Natalie M. Mahowald
Jasper F. Kok
D. S. Ward
Samuel Albani
Sebastian Engelstaeder
Rachel A. Scanza
Mahowald, N
Albani, S
Kok, J
Engelstaeder, S
Scanza, R
Ward, D
Flanner, M
Source :
ResearcherID, Mahowald, NM; Albani, S; Kok, J; Engelstaeder, S; Scanza, RA; Ward, DS; et al.(2013). The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Research. doi: 10.1016/j.aeolia.2013.09.002. UCLA: Retrieved from: http://www.escholarship.org/uc/item/9bm2q8sd
Publication Year :
2014
Publisher :
Elsevier BV, 2014.

Abstract

The global cycle of desert dust aerosols responds strongly to climate and human perturbations, and, in turn, impacts climate and biogeochemistry. Here we focus on desert dust size distributions, how these are characterized, emitted from the surface, evolve in the atmosphere, and impact climate and biogeochemistry. Observations, theory and global model results are synthesized to highlight the evolution and impact of dust sizes. Individual particles sizes are, to a large extent, set by the soil properties and the mobilization process. The lifetime of different particle sizes controls the evolution of the size distribution as the particles move downwind, as larger particles fall out more quickly. The dust size distribution strongly controls the radiative impact of the aerosols, as well as their interactions with clouds. The size of particles controls how far downwind they travel, and thus their ability to impact biogeochemistry downwind of the source region. © 2013 The Authors.

Details

ISSN :
18759637
Volume :
15
Database :
OpenAIRE
Journal :
Aeolian Research
Accession number :
edsair.doi.dedup.....fd71da02c9d5e0bf387a82b58b80e41f
Full Text :
https://doi.org/10.1016/j.aeolia.2013.09.002