Back to Search Start Over

Effective and energy-preserving time discretization for a general nonlinear poromechanical formulation

Authors :
Dominique Chapelle
Bruno Burtschell
Philippe Moireau
Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM)
Laboratoire de mécanique des solides (LMS)
École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Paris-Saclay
École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Centre National de la Recherche Scientifique (CNRS)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Inria Saclay - Ile de France
Source :
Computers and Structures, Computers and Structures, Elsevier, 2017, 182, pp.313-324. ⟨10.1016/j.compstruc.2016.10.022⟩, Computers & Structures, Computers & Structures, 2017, 182, pp.313-324. ⟨10.1016/j.compstruc.2016.10.022⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

Proposed time discretization scheme for general two-phase poromechanical model.Discrete energy estimate with the total free energy of the mixture, in a general nonlinear framework.Numerical examples with representative test problems. We consider a general nonlinear poromechanical model, formulated based on fundamental thermodynamics principle, suitable for representing the coupling of rapid internal fluid flows with large deformations of the solid, and compatible with a wide class of constitutive behavior. The objective of the present work is to propose for this model a time discretization scheme of the partitioned type, to allow the use of existing time schemes and possibly separate solvers for each component of the model, i.e. for the fluid and the solid. To that purpose, we adapt and extend an earlier proposed approach devised for fluid-structure interaction in an Arbitrary Lagrangian-Eulerian framework. We then establish an energy estimate for the resulting time scheme, in a form that is consistent with the underlying energy principle in the poromechanical formulation, up to some numerical dissipation effects and some perturbations that we have carefully identified and assessed. In addition, we provide some numerical illustrations of our numerical strategy with test problems that present typical features of large strains and rapid fluid flows, and also a case of singular transition related to total drainage. An example of challenging application envisioned for this model and associated numerical coupling scheme concerns the perfusion of the heart.

Details

Language :
English
ISSN :
00457949 and 18792243
Database :
OpenAIRE
Journal :
Computers and Structures, Computers and Structures, Elsevier, 2017, 182, pp.313-324. ⟨10.1016/j.compstruc.2016.10.022⟩, Computers & Structures, Computers & Structures, 2017, 182, pp.313-324. ⟨10.1016/j.compstruc.2016.10.022⟩
Accession number :
edsair.doi.dedup.....fd841415c809706276082321effbc8d4
Full Text :
https://doi.org/10.1016/j.compstruc.2016.10.022⟩