Back to Search Start Over

Cryptic carbon and sulfur cycling between surface ocean plankton

Authors :
Elizabeth B. Kujawinski
Benjamin A. S. Van Mooy
Sara J. Bender
E. Virginia Armbrust
Mary Ann Moran
Haiwei Luo
Bryndan P. Durham
Stephen P. Dearth
Shady A. Amin
Christa B. Smith
Shawn R. Campagna
Shalabh Sharma
Source :
Proceedings of the National Academy of Sciences. 112:453-457
Publication Year :
2014
Publisher :
Proceedings of the National Academy of Sciences, 2014.

Abstract

About half the carbon fixed by phytoplankton in the ocean is taken up and metabolized by marine bacteria, a transfer that is mediated through the seawater dissolved organic carbon (DOC) pool. The chemical complexity of marine DOC, along with a poor understanding of which compounds form the basis of trophic interactions between bacteria and phytoplankton, have impeded efforts to identify key currencies of this carbon cycle link. Here, we used transcriptional patterns in a bacterial-diatom model system based on vitamin B12 auxotrophy as a sensitive assay for metabolite exchange between marine plankton. The most highly up-regulated genes (up to 374-fold) by a marine Roseobacter clade bacterium when cocultured with the diatom Thalassiosira pseudonana were those encoding the transport and catabolism of 2,3-dihydroxypropane-1-sulfonate (DHPS). This compound has no currently recognized role in the marine microbial food web. As the genes for DHPS catabolism have limited distribution among bacterial taxa, T. pseudonana may use this sulfonate for targeted feeding of beneficial associates. Indeed, DHPS was both a major component of the T. pseudonana cytosol and an abundant microbial metabolite in a diatom bloom in the eastern North Pacific Ocean. Moreover, transcript analysis of the North Pacific samples provided evidence of DHPS catabolism by Roseobacter populations. Other such biogeochemically important metabolites may be common in the ocean but difficult to discriminate against the complex chemical background of seawater. Bacterial transformation of this diatom-derived sulfonate represents a previously unidentified and likely sizeable link in both the marine carbon and sulfur cycles.

Details

ISSN :
10916490 and 00278424
Volume :
112
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....fdc69b5761bf91597995fa3b7f4bac6e
Full Text :
https://doi.org/10.1073/pnas.1413137112