Back to Search
Start Over
A sparse Bayesian approach for joint feature selection and classifier learning
- Source :
- O2, repositorio institucional de la UOC, Universitat Oberta de Catalunya (UOC), Recercat. Dipósit de la Recerca de Catalunya, instname
- Publication Year :
- 2008
- Publisher :
- Springer Science and Business Media LLC, 2008.
-
Abstract
- In this paper we present a new method for Joint Feature Selection and Classifier Learning using a sparse Bayesian approach. These tasks are performed by optimizing a global loss function that includes a term associated with the empirical loss and another one representing a feature selection and regularization constraint on the parameters. To minimize this function we use a recently proposed technique, the Boosted Lasso algorithm, that follows the regularization path of the empirical risk associated with our loss function. We develop the algorithm for a well known non-parametrical classification method, the relevance vector machine, and perform experiments using a synthetic data set and three databases from the UCI Machine Learning Repository. The results show that our method is able to select the relevant features, increasing in some cases the classification accuracy when feature selection is performed.
- Subjects :
- Computer software -- Development
Computer science
Bayesian probability
Feature selection
Linear classifier
Machine learning
computer.software_genre
Bayesian inference
Relevance vector machine
Artificial Intelligence
Aprenentatge automàtic
Reconeixement de formes (Informàtica)
Software -- Desarrollo
business.industry
Pattern recognition systems
Pattern recognition
Aprendizaje automático
Bayesian statistical decision
ComputingMethodologies_PATTERNRECOGNITION
Kernel method
Estadística bayesiana
Reconocimiento de formas (Informática)
Programari -- Desenvolupament
Computer Vision and Pattern Recognition
Artificial intelligence
business
Feature learning
computer
Classifier (UML)
Subjects
Details
- ISSN :
- 1433755X and 14337541
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Pattern Analysis and Applications
- Accession number :
- edsair.doi.dedup.....fdd4fa96f2bdb62f48ea93aa0515b8fb
- Full Text :
- https://doi.org/10.1007/s10044-008-0130-1