Back to Search
Start Over
Axiomatizing subcategories of Abelian categories
- Source :
- Journal of Pure and Applied Algebra. 226:106862
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- We investigate how to characterize subcategories of abelian categories in terms of intrinsic axioms. In particular, we find intrinsic axioms which characterize generating cogenerating functorially finite subcategories, precluster tilting subcategories, and cluster tilting subcategories of abelian categories. As a consequence we prove that any $d$-abelian category is equivalent to a $d$-cluster tilting subcategory of an abelian category, without any assumption on the categories being projectively generated.<br />Comment: 29 pages. Accepted for publication in Journal of Pure and Applied Algebra
- Subjects :
- Subcategory
Pure mathematics
Algebra and Number Theory
Homological algebra
Cluster tilting
Mathematics - Category Theory
Algebra and Logic
Abelian category
Mathematics::K-Theory and Homology
Mathematics::Category Theory
FOS: Mathematics
Category Theory (math.CT)
Representation Theory (math.RT)
Abelian group
Mathematics::Representation Theory
Mathematics - Representation Theory
Axiom
Algebra och logik
Mathematics
Subjects
Details
- ISSN :
- 00224049
- Volume :
- 226
- Database :
- OpenAIRE
- Journal :
- Journal of Pure and Applied Algebra
- Accession number :
- edsair.doi.dedup.....fe39ae29a7e2c8480e62353e04a593ae
- Full Text :
- https://doi.org/10.1016/j.jpaa.2021.106862