Back to Search Start Over

The generating function of Kreweras walks with interacting boundaries is not algebraic

Authors :
Bostan, Alin
Kauers, Manuel
Verron, Thibaut
Symbolic Special Functions : Fast and Certified (SPECFUN)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Johannes Kepler University Linz [Linz] (JKU)
ANR-19-CE40-0018,DeRerumNatura,Décider l'irrationalité et la transcendance(2019)
Source :
FPSAC'21-Formal power series and algebraic combinatorics, FPSAC'21-Formal power series and algebraic combinatorics, Jul 2021, Ramat Gan, Israel. pp.12
Publication Year :
2020
Publisher :
arXiv, 2020.

Abstract

Beaton, Owczarek and Xu (2019) studied generating functions of Kreweras walks and of reverse Kreweras walks in the quarter plane, with interacting boundaries. They proved that for the reverse Kreweras step set, the generating function is always algebraic, and for the Kreweras step set, the generating function is always D-finite. However, apart from the particular case where the interactions are symmetric in $x$ and~$y$, they left open the question of whether the latter one is algebraic. Using computer algebra tools, we confirm their intuition that the generating function of Kreweras walks is not algebraic, apart from the particular case already identified.<br />Comment: 13 pages, accepted at FPSAC'21

Details

Database :
OpenAIRE
Journal :
FPSAC'21-Formal power series and algebraic combinatorics, FPSAC'21-Formal power series and algebraic combinatorics, Jul 2021, Ramat Gan, Israel. pp.12
Accession number :
edsair.doi.dedup.....fe98a88c9d9e630b390655447b21fe58
Full Text :
https://doi.org/10.48550/arxiv.2012.00816