Back to Search Start Over

Restricted triangular difference mean graphs

Authors :
M. Selvi
D. Ramya
P. Jeyanthi
Source :
Proyecciones (Antofagasta) v.39 n.2 2020, SciELO Chile, CONICYT Chile, instacron:CONICYT, Proyecciones (Antofagasta), Volume: 39, Issue: 2, Pages: 275-286, Published: APR 2020
Publication Year :
2020
Publisher :
Universidad Católica del Norte, Departamento de Matemáticas, 2020.

Abstract

Let G = (V,E) be a graph with p vertices and q edges. Consider an injection f : V (G) → {1, 2, 3, ..., pq}. Define f∗ : E(G) → {T 1 , T 2 , T 3 , ..., T q }, where T q is the q th triangular number such that f∗(e) = for all edges e = uv. If f∗(E(G)) is a sequence of consecutive triangular numbers T 1 , T 2 , T 3 , ..., T q , then the function f is said to be restricted triangular difference mean. A graph that admits restricted triangular difference mean labeling is called restricted triangular difference mean graph. In this paper, we investigate restricted triangular difference mean behaviour of some standard graph.

Details

Language :
English
Database :
OpenAIRE
Journal :
Proyecciones (Antofagasta) v.39 n.2 2020, SciELO Chile, CONICYT Chile, instacron:CONICYT, Proyecciones (Antofagasta), Volume: 39, Issue: 2, Pages: 275-286, Published: APR 2020
Accession number :
edsair.doi.dedup.....feb7e86163348f6e3affd91f27bb48cd