Back to Search Start Over

Phylogenetic analysis and tissue distribution of elasmobranch glucose transporters and their response to feeding

Authors :
Christophe M. R. LeMoine
Courtney A. Deck
Patrick J. Walsh
Source :
Biology Open, Biology Open, Vol 5, Iss 3, Pp 256-261 (2016)
Publication Year :
2016

Abstract

Elasmobranch diets consist of high quantities of protein and lipids, but very low levels of carbohydrates including glucose. Reflecting this diet, most tissues use lipids and ketone bodies as their main metabolic fuel. However, the rectal gland has been shown to be dependent on glucose as a fuel, so we hypothesized that glucose transporters (GLUTs) would be present and upregulated in the gland during times of activation (e.g. following a meal). In this study, we searched for and identified putative class I GLUTs in three elasmobranchs and a holocephalan using transcriptomes, and used these to reconstruct a Bayesian phylogeny. We determined that each of the four species possessed three of the four class I GLUT sequences, but the identities of the isoforms present in each species differed between the elasmobranchs (GLUT1, 3 and 4) and the holocephalan (GLUT1, 2 and 3). We then used qPCR to measure mRNA levels of these GLUTs in the rectal gland, liver, intestine, and muscle of fed and starved spiny dogfish (Squalus suckleyi). The rectal gland data showed higher mRNA levels of GLUT4 in the starved relative to the fed fish. In the muscle, both GLUT1 and 4 were significantly elevated at 24 h post-feeding, as was the case for GLUT4 in the liver. In the intestine on the other hand, GLUT4 was significantly elevated by 6 h post-feeding, remaining elevated through 48 h. We suggest that GLUT4 has taken on the role of GLUT2 in elasmobranchs as the expression patterns observed in the liver and intestine are representative of GLUT2 in other vertebrates.<br />Summary: Our results indicate the presence of three putative glucose transporters in elasmobranchs (GLUT1, 3, 4) and holocephalans (GLUT1, 2, 3). We determined that GLUT1 and GLUT4 mRNA levels change in various dogfish tissues in response to feeding.

Details

ISSN :
20466390
Volume :
5
Issue :
3
Database :
OpenAIRE
Journal :
Biology open
Accession number :
edsair.doi.dedup.....fecc79d554fa739ea825b0ec9ffa1058