Back to Search
Start Over
Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613
- Source :
- Applied microbiology and biotechnology, vol 103, iss 19, Applied Microbiology and Biotechnology, Applied Microbiology and Biotechnology, Springer Verlag, 2019, 103 (19), pp.8145-8155. ⟨10.1007/s00253-019-10089-6⟩, Applied Microbiology and Biotechnology, 2019, 103 (19), pp.8145-8155. ⟨10.1007/s00253-019-10089-6⟩
- Publication Year :
- 2019
- Publisher :
- Springer Science and Business Media LLC, 2019.
-
Abstract
- International audience; The environmental accumulation of polycyclic aromatic hydrocarbons (PAHs) is of great concern due to potential carcinogenic and mutagenic risks, as well as their resistance to remediation. While many fungi have been reported to break down PAHs in environments, the details of gene-based metabolic pathways are not yet comprehensively understood. Specifically, the genome-scale transcriptional responses of fungal PAH degradation have rarely been reported. In this study, we report the genomic and transcriptomic basis of PAH bioremediation by a potent fungal degrader, Dentipellis sp. KUC8613. The genome size of this fungus was 36.71 Mbp long encoding 14,320 putative protein-coding genes. The strain efficiently removed more than 90% of 100 mg/l concentration of PAHs within 10 days. The genomic and transcriptomic analysis of this white rot fungus highlights that the strain primarily utilized non-ligninolytic enzymes to remove various PAHs, rather than typical ligninolytic enzymes known for playing important roles in PAH degradation. PAH removal by non-ligninolytic enzymes was initiated by both different PAH-specific and common upregulation of P450s, followed by downstream PAH-transforming enzymes such as epoxide hydrolases, dehydrogenases, FAD-dependent monooxygenases, dioxygenases, and glycosyl- or glutathione transferases. Among the various PAHs, phenanthrene induced a more dynamic transcriptomic response possibly due to its greater cytotoxicity, leading to highly upregulated genes involved in the translocation of PAHs, a defense system against reactive oxygen species, and ATP synthesis. Our genomic and transcriptomic data provide a foundation of understanding regarding the mycoremediation of PAHs and the application of this strain for polluted environments.
- Subjects :
- [SDV]Life Sciences [q-bio]
Polycyclic aromatic hydrocarbon
Fungus
KUC8613
Applied Microbiology and Biotechnology
03 medical and health sciences
chemistry.chemical_compound
Bioremediation
MD Multidisciplinary
Dentipellis sp
Genetics
polycyclic compounds
Dentipellis sp. KUC8613
Polycyclic Aromatic Hydrocarbons
Transcriptomics
Gene
Biotransformation
030304 developmental biology
chemistry.chemical_classification
0303 health sciences
biology
030306 microbiology
Basidiomycota
Gene Expression Profiling
Human Genome
Genomics
PAH
General Medicine
Mycoremediation
15. Life on land
Phenanthrene
Monooxygenase
biology.organism_classification
Metabolic pathway
chemistry
Biochemistry
PAH (polycyclic aromatic hydrocarbon)
Metabolic Networks and Pathways
White rot fungus
Biotechnology
Subjects
Details
- ISSN :
- 14320614 and 01757598
- Volume :
- 103
- Database :
- OpenAIRE
- Journal :
- Applied Microbiology and Biotechnology
- Accession number :
- edsair.doi.dedup.....fece09991ee7de557b7da7c847706db4
- Full Text :
- https://doi.org/10.1007/s00253-019-10089-6