Back to Search Start Over

Theoretical Chemical Kinetic Study of the H-Atom Abstraction Reactions from Aldehydes and Acids by Ḣ Atoms and ȮH, HȮ2, and ĊH3 Radicals

Authors :
Chong-Wen Zhou
Jorge Mendes
Henry J. Curran
~
Source :
The Journal of Physical Chemistry A. 118:12089-12104
Publication Year :
2014
Publisher :
American Chemical Society (ACS), 2014.

Abstract

Journal article We have performed a systematic, theoretical chemical kinetic investigation of H atom abstraction by H atoms and OH, HO2, and CH3 radicals from aldehydes (methanal, ethanal, propanal, and isobutanal) and acids (methanoic acid, ethanoic acid, propanoic acid, and isobutanoic acid). The geometry optimizations and frequencies of all of the species in the reaction mechanisms of the title reactions were calculated using the MP2 method and the 6-311G(d,p) basis set. The one-dimensional hindered rotor treatment for reactants and transition states and the intrinsic reaction coordinate calculations were also determined at the MP2/6-311G(d,p) level of theory. For the reactions of methanal and methanoic acid with H atoms and OH, HO2, and CH3 radicals, the calculated relative electronic energies were obtained with the CCSD(T)/cc-pVXZ (where X = D, T, and Q) method and were extrapolated to the complete basis set limit. The electronic energies obtained with the CCSD(T)/cc-pVTZ method were benchmarked against the CCSD(T)/CBS energies and were found to be within 1 kcal mol(-1) of one another. Thus, the energies calculated using the less expensive CCSD(T)/cc-pVTZ method were used in all of the reaction mechanisms and in calculating our high-pressure limit rate constants for the title reactions. Rate constants were calculated using conventional transition state theory with an asymmetric Eckart tunneling correction, as implemented in Variflex. Herein, we report the individual and average rate constants, on a per H atom basis, and total rate constants in the temperature range 500-2000 K. We have compared some of our rate constant results to available experimental and theoretical data, and our results are generally in good agreement. Science Foundation Ireland - Grant No. 08/IN1./I2055 peer-reviewed

Details

ISSN :
15205215 and 10895639
Volume :
118
Database :
OpenAIRE
Journal :
The Journal of Physical Chemistry A
Accession number :
edsair.doi.dedup.....fed32ca31b598b13f93f1f96ff478b46
Full Text :
https://doi.org/10.1021/jp5072814