Back to Search Start Over

Distributed optimization for deep learning with gossip exchange

Authors :
Michael Blot
Nicolas Thome
David Picard
Matthieu Cord
Machine Learning and Information Access (MLIA)
LIP6
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Equipes Traitement de l'Information et Systèmes (ETIS - UMR 8051)
CY Cergy Paris Université (CY)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)
Source :
Neurocomputing, Neurocomputing, Elsevier, 2019, 330, pp.287-296. ⟨10.1016/j.neucom.2018.11.002⟩
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

International audience; We address the issue of speeding up the training of convolutional neural networks by studying a distributed method adapted to stochastic gradient descent. Our parallel optimization setup uses several threads, each applying individual gradient descents on a local variable. We propose a new way of sharing information between different threads based on gossip algorithms that show good consensus convergence properties. Our method called GoSGD has the advantage to be fully asynchronous and decentralized.

Details

ISSN :
09252312
Volume :
330
Database :
OpenAIRE
Journal :
Neurocomputing
Accession number :
edsair.doi.dedup.....ff2638e51048eb8b20abfcaf40bf3d18
Full Text :
https://doi.org/10.1016/j.neucom.2018.11.002