Back to Search Start Over

Lite CNN Models for Real-Time Post-Harvest Grape Disease Detection

Authors :
Lucas Mohimont
François Alin
Nathalie Vaillant-Gaveau
Luiz Angelo Steffenel
Laboratoire d'Informatique en Calcul Intensif et Image pour la Simulation (LICIIS)
Université de Reims Champagne-Ardenne (URCA)
Résistance Induite et Bioprotection des Plantes - EA 4707 (RIBP)
Université de Reims Champagne-Ardenne (URCA)-SFR Condorcet
Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)
European Project: 826060,AI4DI
Source :
Workshop on Edge AI for Smart Agriculture (EAISA 2022), Workshop on Edge AI for Smart Agriculture (EAISA 2022), Jun 2022, Biarritz, France, Workshops at 18th International Conference on Intelligent Environments, EAISA-Workshop on Edge AI for Smart Agriculture, EAISA-Workshop on Edge AI for Smart Agriculture, Jun 2022, Biarritz, France. pp.116-125, ⟨10.3233/AISE220029⟩, HAL
Publication Year :
2022
Publisher :
IOS Press, 2022.

Abstract

International audience; Post-harvest fruit grading is a necessary step to avoid disease related loss in quality. In this paper, a hierarchical method is proposed to (1) remove the background and (2) detect images that contains grape diseases(botrytis, oidium, acid rot). Satisfying segmentation performances were obtained by the proposed Lite Unet model with 92.9% IoU score and an average speed of 0.16s/image. A pretrained MobileNet-V2 model obtained 94% F1 score on disease classification. An optimized CNN reached a score of 89% with less than 10 times less parameters. The implementation of both segmentation and classification models on low-powered device would allow for real-time disease detection at the press.

Details

Database :
OpenAIRE
Journal :
Workshop on Edge AI for Smart Agriculture (EAISA 2022), Workshop on Edge AI for Smart Agriculture (EAISA 2022), Jun 2022, Biarritz, France, Workshops at 18th International Conference on Intelligent Environments, EAISA-Workshop on Edge AI for Smart Agriculture, EAISA-Workshop on Edge AI for Smart Agriculture, Jun 2022, Biarritz, France. pp.116-125, ⟨10.3233/AISE220029⟩, HAL
Accession number :
edsair.doi.dedup.....ffec123406f0874b0f73c518eee75001
Full Text :
https://doi.org/10.3233/aise220029