Back to Search
Start Over
Influence of Antimony Species on Electrical Properties of Sb-Doped Zinc Oxide Thin Films Prepared by Pulsed Laser Deposition
- Source :
- Nanomaterials; Volume 13; Issue 11; Pages: 1799
- Publication Year :
- 2023
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2023.
-
Abstract
- This study systematically investigates the influence of antimony (Sb) species on the electrical properties of Sb-doped zinc oxide (SZO) thin films prepared by pulsed laser deposition in an oxygen-rich environment. The Sb species-related defects were controlled through a qualitative change in energy per atom by increasing the Sb content in the Sb2O3:ZnO-ablating target. By increasing the content of Sb2O3 (wt.%) in the target, Sb3+ became the dominant Sb ablation species in the plasma plume. Consequently, n-type conductivity was converted to p-type conductivity in the SZO thin films prepared using the ablating target containing 2 wt.% Sb2O3. The substituted Sb species in the Zn site (SbZn3+ and SbZn+) were responsible for forming n-type conductivity at low-level Sb doping. On the other hand, the Sb–Zn complex defects (SbZn–2VZn) contributed to the formation of p-type conductivity at high-level doping. The increase in Sb2O3 content in the ablating target, leading to a qualitative change in energy per Sb ion, offers a new pathway to achieve high-performing optoelectronics using ZnO-based p–n junctions.
- Subjects :
- antimony-doped ZnO
complex defect
antimony species
oxygen-rich condition
Subjects
Details
- Language :
- English
- ISSN :
- 20794991
- Database :
- OpenAIRE
- Journal :
- Nanomaterials; Volume 13; Issue 11; Pages: 1799
- Accession number :
- edsair.multidiscipl..be961dafdb18c0b1aca34e6babff6897
- Full Text :
- https://doi.org/10.3390/nano13111799