Back to Search Start Over

Evolved Gas Analyses of Sedimentary Rocks and Eolian Sediment in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument from Yellowknife Bay to the Namib Dune

Authors :
Sutter, B.
McAdam, A. C.
Mahaffy, P. R.
Ming, D. W.
Edgett, K. S.
Rampe, E. B.
Eigenbrode, J. L.
Franz, H. B.
Freissinet, C.
Grotzinger, J. P.
Steele, A.
House, C. H.
Archer, P. D.
Malespin, C. A.
Navarro-González, R.
Stern, J. C.
Bell, J. F.
Calef, F. J.
Gellert, R.
Glavin, D. P.
Thompson, L. M.
Yen, A. S.
Publication Year :
2017
Publisher :
American Geophysical Union, 2017.

Abstract

The Sample Analysis at Mars instrument evolved gas analyzer (SAM-EGA) has detected evolved water, H_2, SO_2, H_2S, NO, CO_2, CO, O_2 and HCl from two eolian sediments and nine sedimentary rocks from Gale Crater, Mars. These evolved gas detections indicate nitrates, organics, oxychlorine phase, and sulfates are widespread with phyllosilicates and carbonates occurring in select Gale Crater materials. Coevolved CO_2 (160 ± 248 - 2373 ± 820 μgC_((CO2))/g), and CO (11 ± 3 - 320 ± 130 μgC(CO)/g) suggest organic-C is present in Gale Crater materials. Five samples evolved CO_2 at temperatures consistent with carbonate (0.32± 0.05 - 0.70± 0.1 wt.% CO_3). Evolved NO amounts to 0.002 ± 0.007 - 0.06 ± 0.03 wt.% NO_3. Evolution of O_2 suggests oxychlorine phases (chlorate/perchlorate) (0.05 ± 0.025 - 1.05 ± 0.44wt. % ClO_4) are present while SO_2 evolution indicates the presence of crystalline and/or poorly crystalline Fe- and Mg-sulfate and possibly sulfide. Evolved H_2O (0.9 ± 0.3 - 2.5 ± 1.6 wt.% H_2O) is consistent with the presence of adsorbed water, hydrated salts, interlayer/structural water from phyllosilicates, and possible inclusion water in mineral/amorphous phases. Evolved H_2 and H_2S suggest reduced phases occur despite the presence of oxidized phases (nitrate, oxychlorine, sulfate, carbonate). SAM results coupled with CheMin mineralogical and APXS elemental analyses indicate that Gale Crater sedimentary rocks have experienced a complex authigenetic/diagenetic history involving fluids with varying pH, redox, and salt composition. The inferred geochemical conditions were favorable for microbial habitability and if life ever existed, there was likely sufficient organic-C to support a small microbial population.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od........38..0d862e67d1ff2fd695c9e709476b49c2