Back to Search
Start Over
Folding a better checkerboard
- Source :
- MIT web domain
- Publication Year :
- 2009
- Publisher :
- Springer, 2009.
-
Abstract
- Folding an n ×n checkerboard pattern from a square of paper that is white on one side and black on the other has been thought for several years to require a paper square of semiperimeter n 2 [superscript 2]. Indeed, within a restricted class of foldings that match all previous origami models of this flavor, one can prove a lower bound of n 2 [superscript 2](though a matching upper bound was not known). We show how to break through this barrier and fold an n ×n checkerboard from a paper square of semiperimeter 1/2 n2 [superscript 2] + O(n) In particular, our construction strictly beats semiperimeter n 2 [superscript 2] for (even) n > 16, and for n = 8, we improve on the best seamless folding.<br />National Science Foundation (U.S.) (CAREER award CCF-0347776)
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- MIT web domain
- Accession number :
- edsair.od........88..c6ad311ef427b0d94ae13b2c8c2fabdd