Back to Search Start Over

V. 1.0

Authors :
Bär, K.
Reinsch, T.
Bott [Sippel], J.
Source :
GFZ Data Services
Publication Year :
2019
Publisher :
GFZ Data Services, 2019.

Abstract

Petrophysical properties are key to populate numerical models of subsurface process simulations and for the interpretation of many geophysical exploration methods. They are characteristic for specific rock types and may vary considerably as a response to subsurface conditions (e.g. temperature and pressure). Hence, the quality of process simulations and geophysical data interpretation critically depend on the knowledge of in-situ physical properties that have been measured for a specific rock unit. Inquiries for rock property values for a specific site might become a very time-consuming challenge given that such data are (1) spread across diverse publications and compilations, (2) heterogeneous in quality and (3) continuously being acquired in different laboratories worldwide. One important quality factor for the usability of measured petrophysical properties is the availability of corresponding metadata such as the sample location, petrography, stratigraphy, or the measuring method, conditions and authorship. The open-access database presented here aims at providing easily accessible, peer-reviewed information on physical rock properties in one single compilation. As it has been developed within the scope of the EC funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant agreement No. 608553), the database mainly contains information relevant for geothermal exploration and reservoir characterization, namely hydraulic, thermophysical and mechanical properties and, in addition, electrical resistivity and magnetic susceptibility. The uniqueness of this database emerges from its coverage and metadata structure. Each measured value is complemented by the corresponding sample location, petrographic description, chronostratigraphic age and original citation. The original stratigraphic and petrographic descriptions are transferred to standardized catalogues following a hierarchical structure ensuring intercomparability for statistical analysis. In addition, information on the experimental set-up (methods) and the measurement conditions are given for quality control. Thus, rock properties can directly be related to in-situ conditions to derive specific parameters relevant for modelling the subsurface or interpreting geophysical data.

Details

Language :
English
Database :
OpenAIRE
Journal :
GFZ Data Services
Accession number :
edsair.od.......156..cf5d9b72ec27a01ef03fe108fcf3c236