Back to Search Start Over

Mortensen Observer for a class of variational inequalities - Lost equivalence with stochastic filtering approaches

Authors :
Chaintron, Louis-Pierre
Mateos González, Álvaro
Mertz, Laurent
Moireau, Philippe
Département de Mathématiques et Applications - ENS Paris (DMA)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM)
Laboratoire de mécanique des solides (LMS)
École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
New York University [Shanghai]
NYU System (NYU)
City University of Hong Kong [Hong Kong] (CUHK)
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

We address the problem of deterministic sequential estimation for a nonsmooth dynamics governed by a variational inequality. An example of such dynamics is the Skorokhod problem with a reflective boundary condition. For smooth dynamics, Mortensen introduced in 1968 a nonlinear estimator based on likelihood maximisation. Then, starting with Hijab in 1980, several authors established a connection between Mortensen's approach and the vanishing noise limit of the robust form of the so-called Zakai equation. In this paper, we investigate to what extent these methods can be developed for dynamics governed by a variational inequality.On the one hand, we address this problem by relaxing the inequality constraint by penalization: this yields an approximate Mortensen estimator relying on an approximating smooth dynamics. We verify that the equivalence between the deterministic and stochastic approaches holds through a vanishing noise limit.On the other hand, inspired by the smooth dynamics approach, we study the vanishing viscosity limit of the Hamilton-Jacobi equation satisfied by the Hopf-Cole transform of the solution of the robust Zakai equation. In contrast to the case of smooth dynamics, the zero-noise limit of the robust form of the Zakai equation cannot be understood in our case from the Bellman equation on the value function arising in Mortensen's procedure. This unveils a violation of equivalence for dynamics governed by a variational inequality between the Mortensen approach and the low noise stochastic approach for nonsmooth dynamics.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od.......165..00e5ce3c72671db56ca4f09ef608d421