Back to Search Start Over

Apprentissage automatique interactif pour les opérateurs du réseau électrique

Authors :
Crochepierre, Laure
Knowledge representation, reasonning (ORPAILLEUR)
Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Réseau de Transport d'Electricité [Paris] (RTE)
Thèse CIFRE - RTE (Réseau de transport d'électricité)
Université de Lorraine
Baya Lydia Boudjeloud-Assala
Source :
Apprentissage [cs.LG]. Université de Lorraine, 2022. Français. ⟨NNT : 2022LORR0112⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

In the energy transition context and the increase in interconnections between the electricity transmission networks in Europe, the French network operators must now deal with more fluctuations and new network dynamics. To guarantee the safety of the network, operators rely on computer software that allows them to carry out simulations or to monitor the evolution of indicators created manually by experts, thanks to their knowledge of the operation of the network. The French electricity transmission network operator RTE (Réseau de Transport d'Electricité) is particularly interested in developing tools to assist operators in monitoring flows on power lines. Flows are notably important to maintain the network in a safe state, guaranteeing the safety of equipment and people. However, the indicators used are not easy to update because of the expertise required to construct and analyze them.In order to address the stated problem, this thesis aims at constructing indicators, in the form of symbolic expressions, to estimate flows on power lines. The problem is studied from the Symbolic Regression perspective and investigated using both Grammatical Evolution and Reinforcement Learning approaches in which explicit and implicit expert knowledge is taken into account. Explicit knowledge about the physics and expertise of the electrical domain is represented in the form of a Context-Free Grammar to limit the functional space from which an expression is created. A first approach of Interactive Grammatical Evolution proposes to incrementally improve found expressions by updating a grammar between evolutionary learnings. Expressions are obtained on real-world data from the network history, validated by an analysis of learning metrics and an interpretability evaluation. Secondly, we propose a reinforcement approach to search in a space delimited by a Context-Free Grammar in order to build a relevant symbolic expression to applications involving physical constraints. This method is validated on state-of-the-art Symbolic Regression benchmarks and also on a dataset with physical constraints to assess its interpretability.Furthermore, in order to take advantage of the complementarities between the capacities of machine learning algorithms and the expertise of network operators, interactive Symbolic Regression algorithms are proposed and integrated into interactive platforms. Interactivity allows updating the knowledge represented in grammatical form and analyzing, interacting with, and commenting on the solutions found by the different approaches. These algorithms and interactive interfaces also aim to take into account implicit knowledge, which is more difficult to formalize, through interaction mechanisms based on suggestions and user preferences.; Dans le contexte de la transition énergétique et de l'augmentation des interconnexions entre les réseaux de transport d'électricité en Europe, les opérateurs du réseau français doivent désormais faire face à davantage de fluctuations et des dynamiques nouvelles sur le réseau. Pour garantir la sûreté de ce réseau, les opérateurs s'appuient sur des logiciels informatiques permettant de réaliser des simulations, ou de suivre l'évolution d'indicateurs créés manuellement par des experts grâce à leur connaissance du fonctionnement du réseau. Le gestionnaire de réseau de transport d'électricité français RTE (Réseau de Transport d'Electricité) s'intéresse notamment aux développements d'outils permettant d'assister les opérateurs dans leur tâche de surveillance des transits sur les lignes électriques. Les transits sont en effet des grandeurs particulièrement importantes pour maintenir le réseau dans un état de sécurité, garantissant la sûreté du matériel et des personnes. Cependant, les indicateurs utilisés ne sont pas faciles à mettre à jour du fait de l'expertise nécessaire pour les construire et les analyser. Pour répondre à la problématique énoncée, cette thèse a pour objet la construction d'indicateurs, sous la forme d'expressions symboliques, permettant d'estimer les transits sur les lignes électriques. Le problème est étudié sous l'angle de la Régression Symbolique et investigué à la fois par des approches génétiques d'Evolution Grammaticale et d'Apprentissage par Renforcement dans lesquelles la connaissance experte, explicite et implicite, est prise en compte. Les connaissances explicites sur la physique et l'expertise du domaine électrique sont représentées sous la forme d'une grammaire non-contextuelle délimitant l'espace fonctionnel à partir duquel l'expression est créée. Une première approche d'Evolution Grammaticale Interactive propose d’améliorer incrémentalement les expressions trouvées par la mise à jour d'une grammaire entre les apprentissages évolutionnaires. Les expressions obtenues sur des données réelles issues de l'historique du réseau sont validées par une évaluation de métriques d'apprentissages, complétée par une évaluation de leur interprétabilité. Dans un second temps, nous proposons une approche par renforcement pour chercher dans un espace délimité par une grammaire non-contextuelle afin de construire une expression symbolique pertinente pour des applications comportant des contraintes physiques. Cette méthode est validée sur des données de l'état de l'art de la régression symbolique, ainsi qu’un jeu de données comportant des contraintes physiques pour en évaluer l'interprétabilité. De plus, afin de tirer parti des complémentarités entre les capacités des algorithmes d'apprentissage automatique et de l'expertise des opérateurs du réseau, des algorithmes interactifs de Régression Symbolique sont proposés et intégrés dans des plateformes interactives. L'interactivité est employée à la fois pour mettre à jour la connaissance représentée sous forme grammaticale, analyser, interagir avec et commenter les solutions proposées par les différentes approches. Ces algorithmes et interfaces interactifs ont également pour but de prendre en compte de la connaissance implicite, plus difficile à formaliser, grâce à l'utilisation de mécanismes d'interactions basés sur des suggestions et des préférences de l’utilisateur.

Details

Language :
French
Database :
OpenAIRE
Journal :
Apprentissage [cs.LG]. Université de Lorraine, 2022. Français. ⟨NNT : 2022LORR0112⟩
Accession number :
edsair.od.......165..47d56f57ece3d6a6bede17807ed269bd