Back to Search Start Over

Hierarchical space-time modeling of asymptotically independent exceedances for hourly precipitations in southern France

Authors :
Toulemonde, Gwladys
Bacro, Jean-Noel
Gaetan, Carlo
Opitz, Thomas
Institut Montpelliérain Alexander Grothendieck (IMAG)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Littoral, Environment: MOdels and Numerics (LEMON)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Montpelliérain Alexander Grothendieck (IMAG)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Hydrosciences Montpellier (HSM)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
University of Ca’ Foscari [Venice, Italy]
Biostatistique et Processus Spatiaux (BioSP)
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Source :
Extreme Value Analysis, Extreme Value Analysis, Jul 2019, Zagreb, Croatia
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; The statistical modeling of space-time extremes in environmental applications is key to understanding complex dependence structures in original event data and to generating realistic scenarios for impact models. In this context of high-dimensional data, we propose a novel hierarchical model for high threshold exceedances defined over continuous space and time by embedding a space-time Gamma process convolution for the rate of an exponential variable, leading to asymptotic independence inspace and time. Its physically motivated anisotropic dependence structure is based on geometric objects moving through space-time according to a velocity vector. We demonstrate that inference based on weighted pairwise likelihood is fast and accurate. The usefulness of our model is illustrated by an application to hourly precipitation data from a study region in Southern France, where it clearly improves on an alternative censored Gaussian space-time random field model. While classical limit models based on threshold-stability fail to appropriately capture relatively fast joint tail decay1arXiv:1708.02447v2 [stat.ME] 14 May 2019rates between asymptotic dependence and classical independence, strong empirical evidence from ourapplication and other recent case studies motivates the use of more realistic asymptotic independencemodels such as our

Details

Language :
English
Database :
OpenAIRE
Journal :
Extreme Value Analysis, Extreme Value Analysis, Jul 2019, Zagreb, Croatia
Accession number :
edsair.od.......165..4d8fd06f500d529fbae8a9f0eaec4a3d