Back to Search Start Over

EMG-Based Automatic Gesture Recognition Using Robust Neural Networks (Extended version)

Authors :
Pesquet, Jean-Christophe
Burileanu, Corneliu
Neacșu, Ana-Antonia
OPtimisation Imagerie et Santé (OPIS)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-CentraleSupélec-Université Paris-Saclay
Polytechnic University of Bucharest = Université Politehnica de Bucarest [Roumanie] (UPB)
Université Politehnica [Bucarest, Roumanie]
ANR-19-CHIA-0006,BRIDGEABLE,Ponts entre méthodes itératives proximales et réseaux de neurones(2019)
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

International audience; This paper introduces a novel approach for building a robust Automatic Gesture Recognition system based on Surface Electromyographic (sEMG) signals, acquired at the forearm level. Our main contribution is to propose new constrained learning strategies that ensure robustness against adversarial perturbations by controlling the Lipschitz constant of the classifier. We focus on positive neural networks for which accurate Lipschitz bounds can be derived, and we propose different spectral norm constraints offering robustness guarantees from a theoretical viewpoint. Experimental results on two distinct datasets highlight that a good trade-off in terms of accuracy and performance is achieved. We then demonstrate the robustness of our models, compared to standard trained classifiers in three scenarios, considering both white-box and black-box attacks.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od.......165..72c47afb15ce7459149bde3e36983997